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Abstract

We present BiPOCO, a Bi-directional trajectory
predictor with POse COnstraints, for detecting
anomalous activities of pedestrians in videos. In
contrast to prior work based on feature recon-
struction, our work identifies pedestrian anoma-
lous events by forecasting their future trajectories
and comparing the predictions with their expec-
tations. We introduce a set of novel composi-
tional pose-based losses with our predictor and
leverage prediction errors of each body joint for
pedestrian anomaly detection. Experimental re-
sults show that our BiPOCO approach can de-
tect pedestrian anomalous activities with a high
detection rate (up to 87.0%) and incorporating
pose constraints helps distinguish normal and
anomalous poses in prediction. This work extends
current literature of using prediction-based meth-
ods for anomaly detection and can benefit safety-
critical applications such as autonomous driving
and surveillance. Code is available at https:
//github.com/akanuasiegbu/BiPOCO.

1. Introduction

Pedestrian anomaly detection (PAD) refers to the problem of
identifying pedestrian activities and events that do not con-
form to expected behavior (i.e., “anomalous”) from video
sequences (Li et al., 2013; Andrews et al., 2016; Deecke
et al., 2021). This is an essential task in safe vehicle auton-
omy. If a pedestrian suddenly breaks into a run or jumps in
front of the vehicle, or if a child throws a ball into the street,
an intelligent autonomous vehicle must be able to recognize
these activities as potentially anomalous, so that appropriate
path planning and control strategies may be used to avoid
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collision and ensure safety.

The PAD problem is set up with a training set and a testing
set, where the training videos contain only “normal” pedes-
trian activities (e.g., walking), and the testing videos can
contain both normal and anomalous activities (e.g., running,
jumping, throwing a bag, etc.). The goal of PAD is to learn
the normal pedestrian activity patterns present in the training
data and to detect the anomalies in the testing set.

Anomalous events typically occur far less frequently than
normal activities (Sultani et al., 2018) and it is usually dif-
ficult to obtain training data that contains large quantities
of labeled anomalous events. Thus, existing solutions to
the PAD problem are predominantly unsupervised learn-
ing approaches that learn feature representations for normal
activities given training data that only contains normal in-
stances. Such techniques include sparse coding (Lu et al.,
2013), Minimum Volume-set estimation (Thomas et al.,
2016; 2017), and topic modeling (Isupova et al., 2016; Gird-
har et al., 2016). With the rise of deep learning approaches,
encoder-decoder-style architectures have been developed for
PAD using long short-term memory (LSTM) units (Srivas-
tava et al., 2015), autoencoders (Hasan et al., 2016; Chong &
Tay, 2017; Luo et al., 2017), convolutional neural networks
(CNNs) (Nguyen & Meunier, 2019), and generative adver-
sarial networks (GANSs) (Ravanbakhsh et al., 2017; Chen
et al., 2021). In these works, feature representations for
“normal” activities are typically learned by reconstructing
training video frames, and anomalies are detected by com-
puting reconstruction errors for the test instances (higher
reconstruction error indicates anomalous events). Such
pixel-based features learned through reconstruction can be
unstructured and high-dimensional, which can result in sen-
sitivity to noise, lack of interpretability, and redundancy
(Morais et al., 2019).

In this work, instead of relying on reconstruction error, we
propose to identify anomalous events by evaluating their
expectation and introducing a prediction-based pipeline for
pedestrian video anomaly detection. Our main contributions
include:

* BiPOCO, a novel bi-directional trajectory predictor
that predicts pedestrian 2-D skeleton pose trajectories
while incorporating a novel set of compositional pose
constraints based on the physical structure of human
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Figure 1. Skeleton Pose.

skeletons (poses).

* An anomaly detection pipeline based on BiPOCO joint
prediction errors to distinguish anomalous pedestrian
events from normal instances. Our prediction-based
pipeline outperformed previous reconstruction-based
methods. We introduce pose-based losses, which re-
sulted in increased detection accuracy of 11.4%-14.8%
compared with prior BiTrap trajectory predictors with-
out pose-based losses.

 Extensive ablation studies across pose-based loss terms
on two benchmark datasets. We observed that con-
straining the locations of the extremities (the joint end-
points) has significant impact on improving both joint
prediction and anomaly detection results, while a com-
bination of bone (limbs) and joint-based losses also
contribute to improved detection results.

This work offers a solution to the PAD problem by lever-
aging recent advances in trajectory forecasting techniques,
and provides insights for incorporating structure-aware pose
constraints.

2. Our Approach

BiPOCO takes pedestrian skeleton pose trajectories from
video data as input and outputs predicted poses (sets of joint
locations) for all pedestrians at future timesteps. Section
2.1 describes the foundation of BiPOCO, a CVAE-based
bi-directional trajectory predictor. Section 2.2 presents
three novel compositional pose constraints that incorpo-
rate skeleton structure when training BiPOCO. Section 2.3
describes the anomaly detection mechanism, where frame-
level anomaly scores can be computed based on joint errors
after obtaining BiPOCO predictions to detect anomalous
pedestrian events.

2.1. Bi-directional Trajectory Predictor

Our bi-directional trajectory predictor is built upon the Bi-
TraP model (Yao et al., 2021). In BiTraP, input sequences
are encoded using a gated-recurrent unit (GRU) encoder
network to obtain encoded feature vectors for input trajec-
tory sequences. Then, a conditional variational autoencoder
(CVAE) is used to predict a Gaussian distribution mean and
covariance from input pedestrian trajectory sequences at

Figure 2. BiPOCO pipeline diagram.

both observed and ground truth future timesteps. Next, a la-
tent variable Z is sampled from the learned distribution and
concatenated with the encoded feature vectors to predict a
goal location for the trajectory. The predicted goal is used in
a bi-directional trajectory generation network, where a set of
fully connected (FC) networks and GRUs are used to predict
future trajectories in both forward (from current timestep to
goal location at the prediction horizon) and backward (from
predicted goal to the current timestep) directions. Figure 2
shows the diagram for the network architecture.

The standard BiTraP model only predicts bounding box
locations. To predict the full body model of the dynamic
skeleton features of pedestrians, we modified the network
to predict COCO-style skeleton joint (“keypoint™) locations
(see Figure 1 for the location of the 17 keypoints). Note
that we appended #18, a root joint, as the mean of left and
right shoulder and hip joints. We use AlphaPose (Fang et al.,
2017; Xiu et al., 2018) to generate 2-D skeleton joint loca-
tions for all pedestrian sequences. During training, given
joint locations of pose sequence length 7 4 § (where 7 and
0 are observation and prediction horizons, respectively), a
bi-directional trajectory prediction loss L is used to mini-
mize the L2 error between the predicted goal and poses as
well as the Kullback-Leibler divergence between prior and
recognition networks in the CVAE (see Appendix A).

2.2. Compositional Pose Constraints

We introduce a novel set of compositional pose constraints
(based on bone, joints, and endpoints) on top of the bi-
directional trajectory predictor loss to take advantage of the
physical properties of human skeleton structure.

Bone Loss: Following (Sun et al., 2017), we define a bone
as a directed vector pointing from a joint to its parent, B,, =
Jparent(n) — Jn, Where the function parent(n) returns the
index of parent joint for the n'”* joint J,,. The bone-based
loss is written as Lp = 27118:1 HB" — B"H’ where |||
denotes L1-norm, B is the ground truth bone vectors as
obtained by AlphaPose, and B is the bone vectors computed
from the predicted joints by our BiPOCO predictor. The
bone loss incorporates geometric structure by accounting
for the shapes (directions and lengths) of limbs.
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Endpoint Loss: Human extremities carry powerful infor-
mation of the behavior and action of the person and can
be regarded as a compact semantic representation of the
human posture (Yu & Aggarwal, 2009). However, the loca-
tions of the extremities (the joint endpoints) are often poorly
reconstructed and/or predicted due to their wide range of
motion and noises caused by self occlusion (Huang et al.,
2018; Du et al., 2020). We propose to incorporate the errors
between the predicted endpoint joints and their parent joint
locations, so that the algorithm may better learn the mo-
tion of the pedestrians’ extremities and enhance the overall
pose prediction. We consider six endpoint tracks - left and
right arms, legs, and faces. We write out the endpoint loss
equation for the left arm (LA) below as an example

Z(jn - Jparent(n))

= H(jlo — Jg) + (jg — J6) + (36 — JlS)
where n denotes the joint endpoints along the left arm, the
indices {6, 8,10} correspond to left shoulder, elbow, and
wrist, respectively, and 18 is the root joint. Similarly, we
can write out loss terms for the right arm (RA), left face

(LF), right face (RF), left leg (LL) and right leg (RL) (see
Appendix B). The endpoint loss will be computed as

Le=Lpa+Lra+Lrr+Lrr+Lrr+Lrr. (2)

Loa= .n e {6,8,10}

(D

k]

Joint Loss: The trajectory loss in Section 2.1 was computed
using normalized, relative pose coordinates. To account
for the skeleton’s absolute position in relation to the entire
scene in the image frame, we also include a global joint loss
term, where the difference between the ground truth and
predicted joints in a global (image) coordinate frame was

18 ‘jn_']n

el , where
J,, and J,, are the predicted and ground truth joint locations.

computed during training, Ly = )

The overall training loss for BIPOCO is
L=Lr+alLg+ SLg+~Ly, 3)

where «, 8 and y are weights associated with each of the

loss components. Currently «, /3, and -y are set to one. We

will present an ablation study on various combinations of
the loss components in the experiments.

2.3. Anomaly Event Detection

BiPOCO outputs predicted skeleton joint locations for each
pedestrian in each frame. Our hypothesis is that the pre-
dicted poses of pedestrians performing anomalous activi-
ties will deviate further from the ground truth trajectory
compared to normal activities, since the BiPOCO predic-
tor was trained to learn normal (walking) motion from the
training data. Thus, the prediction error between the pre-
dicted and ground truth pedestrian poses can be used as an
indicator for identifying anomalous events. We first com-
pute person-level joint errors via a weighted squared error
el = Z,l;l Wit (St — jkt)z, where Jy; is the ground truth

(obtained via AlphaPose) skeleton joint location for k'"
joint at timestep ¢, jkt is the BiPOCO prediction, and wy,
is the confidence score obtained by AlphaPose to indicate
the visibility of the k" joint at timestep .

Since we use a sliding window method to handle pedestrian
pose sequences as inputs and outputs for BiPOCO, there can
exist multiple predictions for the same pedestrian instance.
In this case, we follow (Kanu-Asiegbu et al., 2021) and use
two error measures, named “Summed Error” and “Flattened
Error”, to gather anomaly scores for the same pedestrian
across multiple predictions. The Summed Error sums up
the skeleton joint errors for all prediction timesteps in each
sequence, and the Flattened Error averages prediction errors
at the same timestep across pedestrian sequences.

After computing the skeleton joint errors for each pedestrian
1 at each frame (timestep) ¢, we aggregate the skeleton errors
into a frame-level anomaly score. The frame-level anomaly
score at timestep ¢ is computed by max pooling the weighted
squared error, ef , of all skeleton instances in that frame
as etf = maxypep, €, Where P, refers to the set of all
pedestrian instances appearing in the frame ¢. We use max
pooling to suppress the influence of normal instances present
in the scene, since normal activities correspond to smaller
prediction errors and the number of normal instances can
vary largely in real videos (Morais et al., 2019). The frame-
level anomaly scores for all frames ¢ are the final outputs of
our pipeline for anomaly detection.

3. Experiments

We examine the performance of our BiPOCO predictor on
two benchmark pedestrian anomaly detection datasets, Av-
enue (Lu et al., 2013) and ShanghaiTech (ST) (Luo et al.,
2017) datasets. The Avenue dataset contains 16 training
videos and 21 testing videos (640 x 360 pixels) collected
at 25 frames per second from a fixed location (15,328 train-
ing frames and 15,324 testing frames). The ShangahiTech
dataset includes 330 training videos and 107 testing videos
(856 x 480 pixels) collected from 13 locations with differ-
ent camera angles. In both datasets, pedestrian walking
activities are labeled as “normal”. Events such as riding a
bike/skateboard, loitering, fighting, running, jumping and
throwing objects are labeled as anomalous events. We also
report results on HR-Avenue and HR-ShanghaiTech, an ab-
breviated version of both datasets that ignored video frames
that contain non-detectable poses or non-human anomalies
(Morais et al., 2019). Frame-level ROC (receiver operating
characteristic) AUC (area under curve) is used as the bench-
mark evaluation metric to evaluate the anomaly detection
results following (Hasan et al., 2016; Morais et al., 2019).

We report the AUC detection results of our proposed
BiPOCO approach with comparison methods (see Table 1).
BiPOCO outperforms previous reconstruction-based ap-
proaches, the Conv-AE (Hasan et al., 2016) and TSC sRNN
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(Luo et al., 2017) on the HR-Avenue and ShanghaiTech
datasets. BiPOCO also performs better than a previous
frame-based prediction approach using U-Net (Liu et al.,
2018) that generates entire future frames instead of leverag-
ing human trajectories. BiTraP (Kanu-Asiegbu et al., 2021)
and MPED-RNN (Morais et al., 2019) both consider hu-
man trajectories, but BiTraP only predicts bounding boxes
while MPED-RNN considers human skeletons but does not
include any of our structured pose-based loss terms. Our
BiPOCO achieves ~8% improvement in detection AUC on
the HR-Avenue dataset, which shows the effectiveness of
including both full skeleton representation and the pose con-
straints. BIPOCO is currently among the leading methods
on HR-Avenue and ShanghaiTech and outperforms previous
frame and skeleton prediction-based methods, but it has
not yet surpassed (Rodrigues et al., 2020), which considers
trajectories across multiple timescales (Current BiPOCO is
trained at a fixed timescale - we elaborate on this next).

Table 1. AUC comparison results with existing methods.

Avenue | HR-Av. ST HR-ST

Stacked LSTM (baseline) | 0.631 - 0.655 -
Conv-AE (2016) 0.702 0.848 | 0.704 | 0.698

TSC sRNN (2017) 0.817 - 0.680 -
U-Net (2018) 0.849 0.862 | 0.728 | 0.727
MPED-RNN (2019) 0.863 0.863 | 0.734 | 0.754
Multi-Timescale (2020) 0.828 0.883 | 0.760 | 0.770

BiTraP bbox only (2021) | 0.720 - 0.719 -
BiPOCO (Ours) 0.802 0.870 | 0.737 | 0.749

We conducted an ablation study on the compositional pose
constraints on both Avenue and HR-Avenue datasets (see
Table 2). The observed and predicted pedestrian sequence
lengths 7 = § = {3,5,13,25} correspond to activities at
varying timescales. For example, “jumping” can occur at a
very short timescale whereas “loitering” may be a long-term
anomaly (Rodrigues et al., 2020). We also report anomaly
detection results using both Summed Error (SE) and Flat-
tened Error (FE) measures (see Section 2.3). As shown,
adding the endpoint loss term achieves the highest over-
all AUC in both Avenue and HR-Avenue, outperforming
trajectory loss only (None) without any pose constraints.
Using the Flattened Error measure in general outperforms
the Summed Error measure, which indicates that it is ad-
vantageous to average across the multiple predictions at the
same timestep generated by the sliding window sequences.
The endpoint loss achieves a high detection performance at
shorter timescales (3), but deteriorates as the timescale in-
creases, possibly because (i) the pedestrian extremities start
to have greater variations in longer sequences and (ii) there
are fewer longer sequences for training with complete end-
points, as noises and self-occlusion can lower the AlphaPose
confidence on the extremities. The combination of bone and
joint losses also achieves a high AUC, particularly in longer
timescales (13 and 25), which shows that constraining the
physical structure (limb length, shape, global joints) of the

pedestrians helps better distinguish the predicted poses for
normal and anomalous activities. We provide in Appendix
F an additional analysis on joint error results and find that
the endpoint loss and the combination of Bone-Endpoint
and Bone-Joint losses produces a larger margin between the
predicted joint errors of normal and anomalous instances,
which contributes to improved detection performance.

Table 2. Ablation study of the pose constraints: Bone(B), End-
point(E), Joint(J), All losses(All), and Trajectory loss only(None).
Blue: best AUC at each timescale. Bold: best AUC overall.

Loss Terms
Dataset| 7| E J BE BJ EJ Al None
HRAw | 3 | 0715 0852 0735 0830 0697 0722 0689 0757
sH 510725 0779 0733 0784 0754 0714 0729 0.748
13| 0754 0748 0779 0777 0762 0722 0.707 0.753
25 1 0.663 0696 0.670 0.661 0708 0.664 0.670 0.668
3 (0712 0.870 0.725 0826 0708 0.711 0685 0.758
HRAv | 5 [ 0721 0788 0731 0760 0739 0714 0730 0752
FB 130779 0745 0750 0759 0756 0729 0.767 0.768
25 1 0.670 0717 0.692 0.690 0.748 0.678 0720 0.698
3 (0678 0772 0698 0745 0677 0683 0657 0.707
Avene | 3| 0693 0740 0701 0734 0725 0.688 0685 0704
s 13| 0704 0694 0702 0727 0723 0676 0.653 0.709
25 0.634 0669 0.645 0.640 0.677 0.638 0.643 0.635
3 1069 0.802 0695 0761 0693 0.693 0667 0.720
Avenue | 5| 0727 0786 0744 0781 0766 0741 0720 0747
s 13]0731 0710 0718 0752 0752 0711 0702 0727
251 0.640 0.692 0.654 0667 0705 0.673 0689 0.691

4. Limitations

Our approach shows encouraging results leveraging pose
prediction and trajectory forecasting techniques for pedes-
trian anomaly detection. Adding novel compositional pose
constraints helps distinguish normal and anomalous poses
and thus, can improve anomaly detection performance.

This approach can be potentially applied for vision-only self-
driving, as the pipeline only requires camera footage and
does not require more advanced sensors such as LiDARs
(Light Detection and Ranging), etc. However, current results
are tested on stationary camera videos only and it would
be worthwhile to further evaluate the approach on naturalis-
tic driving datasets. Additionally, the current pipeline only
warns about the occurrence of anomalous events and does
not distinguish specific activity types; future work can in-
clude leveraging the predicted pose information to provide
additional information about the motions and behaviors of
pedestrians. Furthermore, our approach does not require
manual annotation of skeletons a priori, but relies on the
accuracy of image-based pose estimators. Future work on
improving the accuracy/reducing noise on pose estimation
(e.g., using temporal information of the pose sequence in-
stead of frame-based estimation) can be investigated.

5. Conclusion

We present BiPOCO, a bi-directional trajectory predictor
with pose constraints for pedestrian anomaly detection. We
achieve high detection AUC (87% on HR-Avenue) while
demonstrating the effectiveness of adding endpoint, bone
and joint-based losses for incorporating skeleton structure.
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Appendix
A. CVAE Details and the Trajectory Loss Equation

We present additional details on the conditional variational autoencoder (CVAE) in the bi-directional trajectory predictor in
BiPOCO. The CVAE learner can be divided into two parts, a prior network and a recognition network (Sohn et al., 2015),
as shown in Figure 2. The prior network predicts the distribution mean and covariance N (u z,,%z,) of trajectories in
observed timesteps only, while the recognition network predicts the distribution mean and covariance N (1 7, $2z,) of both
observed and ground truth (target) future trajectories. Both distributions are assumed to follow a Gaussian distribution. A
Kullback—Leibler divergence (K LD) loss between N (pz,,Xz,) and N (uz,, X z,) is optimized so that the dependency
between observed and ground truth (target) trajectory sequences at future timesteps may be captured. A latent variable Z is
sampled from N (u 7,> % z,) and concatenated with the input encoder hidden state to predict the pedestrian’s future goal

pose G, using a 3-layer multi-layer perceptron (MLP) network.

As shown in Figure 1, the human pose is structured as a tree. Limbs can be expressed using joints in a parent-child
relationship (for example, the left shoulder joint 6 is the parent for the left elbow joint 8, and left wrist joint 10 is the child of
the left elbow joint 8). The arrows indicate such joint parent-child relationships. Following (Sun et al., 2017), we define a
bone as a directed vector pointing from a joint to its parent, B, = Jparent(n) — Jn, where the function parent(n) returns
the index of parent joint for the n** joint J,,. The root joint, 18, is regarded as the parent for the shoulders (6, 7), nose (1),
and hip joints (12, 13). The parent of the root joint is the image origin. Then, the position of each joint relative to its parent
joint (essentially, the “bone” vectors) can be computed. These relative joint coordinates were used as inputs to our BiPOCO
model, so as to constrain the range of joint location values while preserving the local skeleton joint relationships.

The bi-directional trajectory predictor also includes a bi-directional decoder (Yao et al., 2021), which contains both forward
and backward recurrent neural networks (RNNs) composed of a sequence of gated-recurrent units (GRUs). The forward
RNN is similar to a regular RNN decoder except its output is not transformed to trajectory space. The backward RNN
is first initialized from the input encoder hidden state. Then, the backward RNN takes the estimated goal as input and
propagates backwards from time ¢ + § to ¢ + 1, so that backward hidden state is updated from the goal to the current location.
Here, the “goal” is defined as the pedestrian’s goal pose at the last timestep of the prediction sequences. The goal vectors
(relative coordinates) at the last timestep can be written as Gy = ]§t+5, where t is the current timestep and ¢ is the prediction
horizon. Both forward and backward hidden states for the same timestep are then concatenated to predict the final pose at
that timestep. The trajectory loss function is a combination of the L2 loss for the goal pose (in relative coordinates), the L2
loss for the entire trajectory, and the KL-divergence loss between prior and recognition networks, written as

t+1

Z k_ fak
2+ HB* B.

=t+1

_ t+7 St+T
Ly = HB* _B!

2+DKL(P||Q)a “4)

where B! denotes the ground truth pedestrian skeleton keypoints in relative coordinates (i.e., the bone vectors) at timestep t,
Bi denotes the predicted pedestrian skeleton bones at timestep ¢, Bt and Bi” is the ground truth and predicted final goal
pose of the pedestrian at the last timestep of the prediction horizon, and Dk, (P||@) denotes the KL-Divergence between
N(pz,,Xz,) and N (pz,,% z,) learned by the prior and recognition networks in the CVAE. The predicted poses can be
recovered and outputted from the predicted bone vectors in relative coordinates.

B. Endpoint Loss Equations

We consider six endpoint tracks - left and right arms, legs and faces. For completeness, here is the endpoint error equation
for the left arm (LA) again
Lra= ,n € {6,8,10}

Z(jn - Jparent(n))

n

%)

= H (jlo - Js) + (js - J6> + (jG - Jls)
where n denotes the joint endpoints along the left arm, the indices {6, 8, 10} correspond to shoulder, elbow, and wrist,
respectively, and 18 is the root joint.

7
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The endpoint error for the right arm is

Lra= ,n€{7,9,11}

Z(jn - Jparent(n))

) (5= ¢ (- )]

where n denotes the joint endpoints along the right arm.

(6)

The endpoint error terms for the left and right legs are:

LLL = Z(jn - Jparent(n)) NS {125 14; 16}
n )
= (j16 - J14) + <j14 - J12) + (ju - J18)

)

LRL = Z(jn - Jparent(n)) ,n e {137 15, 17}
: ®)

= (j17 - J15) + (j15 - J13) + (j13 - Jls) H :
where n denotes the joint endpoints along the left and right legs, the indices {12, 14, 16} and {13, 15,17} correspond to left
and right hip, knee, and ankle joints, respectively, and 18 is the root joint.

The endpoint error terms for the left and right face are:

Lrrp = Z(jn - me'ent(”)) e {1,2,4} 9
- (J4 - JQ) + (JE - J1) + (fl - JlS) ;

Lrr = ;(jn - Jparent(")) ne{l1,3,5} (10)
— (j5_J3)+<j3—J1)+(j1—J18)H,

where n denotes the joint endpoints along the left and right sides of the face, the indices {2,4} and {3, 5} correspond to left
and right eye and ear, respectively, 1 is the nose, and 18 is the root joint.

The complete endpoint loss is computed as
Lg=Lpa+Lra+Lrr+Lrr+ L+ LRL- (11)

C. Training and Testing Procedures

The pedestrian anomaly detection problem is set up with a training set and a testing set, where the videos in training only
contains “normal” events (such as walking activities), and no anomalies. Testing videos can contain both normal and
abnormal/anomalous activities. The goal of our BIPOCO pipeline is to detect the anomalies in the testing set. The raw input
data are in the form of 2-D RGB camera videos containing human/pedestrian activities, such as walking, running, jumping,
etc. The output of our method is the detected anomaly scores for each frame in the video.

During training, to obtain pose trajectories, we first extracted pedestrian poses in 2-D skeleton joint representation, J, using
AlphaPose pose estimator (Fang et al., 2017; Xiu et al., 2018). The bone vectors, B, as described in Appendix A, were
computed based on J and were passed into BiPOCO model. The pose trajectories were broken down into subsequences of
length 7 + §, where 7 and § are observation and prediction horizons, respectively. A separate model is trained for each
input/output length 7 = § € {3,5, 13,25} using the proposed loss function (Eq.(3)) with the pose constraints.

Given testing videos, we first extract pedestrian poses using AlphaPose, similar to training. Then, the trained BiPOCO
model was used for inference to predict pedestrian future poses for testing sequences. Since training data contains only
“normal” (i.e., walking) sequences, the assumption is that the BIPOCO model learns the normal walking pattern and will
predict more accurately on normal walking activities, whereas the predicted poses will differ greatly from the ground truth
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Algorithm 1 BiPOCO for Anomaly Detection
TRAINING

Require: Training videos
Extract pose joints J for all pedestrians using AlphaPose
Compute bone vectors B, < Jparent(n) — In, Vo = {1, ..., 17}
Train BiPOCO using Eq.(3)
return Trained BiPOCO model

TESTING
Require: Testing videos; Trained BiPOCO model
Extract pose joints J¢¢¢! for all testing pedestrians using AlphaPose
Obtain predicted joints Jtest by perform inference using trained BiPOCO model
Compute person-level weighted joint error e} < Z,l;l Wit (Tt — J Kt )>
Compute summed error and flattened error following Section C in (Kanu-Asiegbu et al., 2021)
Compute frame-level anomaly score by max pooling ef + maxypep, €/
Compute AUC based on the anomaly scores across all frames
return Frame-level anomaly score e{ ,Vf,t; AUC score

when testing on anomalous activities. This assumption fits the definition of “anomaly” that anomalous events differ from
expectations. After obtaining the predicted poses for testing pedestrians, the joint error was computed and used for anomaly
detection as described in Section 2.3. The final output of the pipeline is the frame-level anomaly scores for all testing videos.

Additional details such as code, pretrained models, input JSON files (pedestrian trajectories obtained from AlphaPose), and
some output PKL files (pedestrian trajectories obtained from trained model) can be found at https://github.com/
akanuasiegbu/BiPOCO.

D. Implementation Details

To train the bi-directional trajectory predictor in BiPOCO, as discussed in Section 2.1, we first transform the poses into
relative coordinates by using the bone vectors B, and then use a min-max normalization to normalize the pose data, where
the max is the width and height of the video frames and the min is set to zero. To compute the joint loss in the pose
constraints, we first un-normalize the predicted joints to obtain joints in the global (image) coordinate (in pixels), compute
the joint loss, and then re-normalize it based on the video width and height. Our model input has a dimension of 36 (34 from
the AlphaPose in COCO format — 17 keypoints x 2 dimensions, plus 2 for the root joint). We also pass in the AlphaPose
confidence scores in order to compute the weighted squared (prediction) error (see Section 2.3). Three NVIDIA GPUs were
used for training in our experiments, a Tesla V100 SXM?2 (16 GB), a TITAN V (12 GB), and a TITAN Xp. The number
of epochs for the Avenue dataset was 250 for timescales 3 and 5, and 500 epochs for longer (13/25) timescales. For the
Shanghaitech dataset, we ran for 500 epochs. A learning rate scheduler with Reduce L ROn Plateau was used to train the
BiPOCO predictor.

E. Detection Results on ShanghaiTech

We present an ablation study on the compositional pose constraints on ShanghaiTech and HR-ShanghaiTech datasets,
supplementary to Table 2. We report anomaly detection AUC results on timescales {3, 5, 13,25} for both Summed Error
and Flattened Error measures. Similar to our observation on the Avenue dataset, the combination of bone and joint losses
contributes to a higher AUC and adding the pose contraints in general performs better than using trajectory loss only.

F. Joint Error Results

We present joint error results to study the prediction performance of our BiPOCO pipeline. The joint error is computed as
the root mean squared error between predicted and ground truth joints across all prediction timesteps

€j 12)
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Table 3. Ablation study of the pose constraints on ShanghaiTech and HR-ShanghaiTech datasets: Bone(B), Endpoint(E), Joint(J), All
losses(All), and Trajectory loss only(None). Blue: best AUC results at each timescale. Bold: best AUC overall.

Dataset Timescale Loss Terms

B E J B-E B-J E-J All None
HR- T=6=3 | 0.724 0.625 0.720 0.683 0.720 0.723 0.724 0.715
ShanghaiTech | 7=§d=5 | 0.740 0.680 0.743 0.728 0.742 0.740 0.740 0.736
-SE T=06=13 1] 0.547 0.728 0.725 0.734 0.735 0.728 0.720 0.729

T=90=25]0652 0.671 0.525 0.668 0.665 0.665 0.669 0.520

T=0= 0.724 0.627 0.722 0.676 0.715 0.722 0.722 0.717
HR- T=4d=5 | 0743 0.687 0.745 0.733 0.749 0.747 0.742 0.739
ShanghaiTech | 7= =13 | 0.555 0.740 0.733 0.739 0.743 0.747 0.734 0.744
-FE T=0=2510.658 0.683 0.556 0.690 0.675 0.668 0.676 0.543

T=60=3 | 0709 0.620 0.706 0.672 0.705 0.709 0.709 0.700
T=46=5 | 0727 0671 0730 0.716 0.729 0.726 0.729 0.724
ST-SE T=90=13 ] 0552 0.717 0.714 0.722 0.724 0.716 0.709 0.717
T=0=25]0.646 0.664 0523 0.661 0.657 0.656 0.661 0.522
T=46=3 | 0709 0.621 0.708 0.665 0.700 0.707 0.708 0.703
T=4d=5 |0729 0678 0.731 0.721 0.735 0.734 0.729 0.726
ST -FE T=6=13 | 0.548 0.730 0.723 0.729 0.734 0.737 0.725 0.734
T=0=25|0.65 0.674 0.553 0.681 0.670 0.662 0.667 0.549

Table 4. Joint Error results for normal/anomalous instances on Avenue and HR-Avenue datasets. Blue corresponds to best AUC values
from Summed Error for the different timescales. Bold corresponds to the largest difference between the normal and anomalous joint
errors.

Dataset Timescale Loss Terms
B E J B-E B-J E-J All None
T=86=3 | 2.52/295 4.84/6.68 2.29/2.81 2.77/3.52 2.45/2.89 2.39/2.85 2.54/2.84 2.38/2.88
HR-Avenue

T=4§0=>5 | 2.89/3.46 3.92/492 273/3.68 2.78/3.70 2.53/3.65 2.77/3.33 3.01/3.65 2.71/3.52
T=0=13| 3.36/497 4.00/5.05 3.36/4.79 3.28/5.10 3.23/4.90 3.33/4.94 4.24/4.80 3.82/5.28
T=0=25| 4.68/582 3.98/596 4.40/5.88 4.36/598 4.35/6.60 4.94/6.72 4.62/6.39 4.31/6.09
T=0=3 | 2.53/3.30 4.83/6.78 2.30/3.27 2.77/3.92 2.46/3.30 2.40/3.30 2.56/3.31 2.39/3.34
T=0=>5 | 291/3.84 393/524 2.74/4.09 2.79/3.97 2,53/3.89 2.78/3770 3.03/4.11 2.72/3.94
T=0=13| 3.37/5.16 4.05/533 3.37/527 3.29/536 3.23/5.13 3.34/5.24 4.27/5.33 3.87/5.60
T=0=25|470/629 3.99/6.33 4.45/6.28 4.37/6.33 4.34/6.71 4.93/6.94 4.61/6.50 4.29/6.17

Avenue

Table 4 presents joint error results for normal and anomalous instances on Avenue and HR-Avenue datasets. We find that
our best performing model with the highest AUC (using the endpoint loss, timescale 3) has higher joint prediction error
for both normal and anomalous frames (4.84/6.68 and 4.83/6.78) compared to other loss terms, but the difference between
anomalous and normal joint errors for using the endpoint loss is also the largest. This corresponds to a high detection AUC
performance as shown in Table 2. This implies that, for timescale 3, using the other loss terms (bone and joints) provided a
more accurate prediction on both normal and anomalous instances, which made it harder to separate normal and anomalous
instances. On the other hand, the endpoint loss, with emphasis on constraining the extremities, learned the “normal” patterns
better than the untrained, anomalous events, and, thus, resulted in a larger difference between the normal and anomalous
cases and can, thus, better distinguish between the two, leading to a higher AUC detection performance.

G. Visual Results of Pose Prediction

We present two visualization examples of the BIPOCO pose prediction results. Figure 3 presents visual results of a “normal”
walking pedestrian sequence in the Avenue dataset. Figure 4 presents visual results of an anomalous event where a pedestrian
is throwing a bag. As shown, the predicted pose (white) for the walking pedestrian overlaps with the ground truth pose
(green) well, and captures the movements of the legs during walking. For the “throwing” sequence, since BIPOCO was
trained on normal walking sequences only, the predicted pose for throwing a bag did not quite match the ground truth,
particularly for the actions in the left arm, which is as expected. It is also worth noting that BiPOCO can produce visually
physically plausible poses for both normal and anomalous activities.
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Figure 3. Visualization of ground truth (green) and predicted poses (white) for a “normal” pedestrian walking sequence (timescale 13,
Avenue dataset video 05 frames #195 to #207, pedestrian ID 05). Best viewed in color. The numbers under the images are frame numbers.

482 485 488
Figure 4. Visualization of ground truth (green) and predicted poses (white) for an anomalous activity, where the pedestrian is jumping
up and also throwing a bag (timescale 13, Avenue dataset video 05 frames #467 to #488, pedestrian ID 06). Best viewed in color. The
numbers under the images are frame numbers.



