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Abstract

This paper presents a computationally efficient

selective attention strategy for a lidar-based 3D

object detector that takes inspiration from human

fovea using a mixed-resolution scheme: a lower

resolution for peripheral and a higher resolution

for a mission-critical region. An end-to-end rein-

forcement learning agent is developed to generate

human-like “attention” such that a sweet-spot is

achieved by trading off efficiency (low computing

power) and effectiveness (high recall rate for the

detector). The proposed attention implementation

is self-contained, with the lidar point cloud as

the only input. The two proposed policies: deep

Q network (DQN) and policy gradient (PG), are

evaluated using the KITTI vision benchmark suite

dataset. Results demonstrate that our approach

either improves the detector’s recall rate up to

20 percent under the same computing inference

time or shortens the inference time up to 15 per-

cent under the same recall rate compared with the

baseline.

1. INTRODUCTION

Over the past years, we have seen a significant rise in au-

tonomous driving (AD) research. An extensive sensor suite

with high-definition (HD) capability is mounted on the AD

vehicles to make robotic perception systems robust in sens-

ing surrounding traffic situations. The HD sensors enable

small object detection at a distance, and the wide FOV

multi-modality integration in the same package reduces the

plethora of sensors. However, the HD sensors introduce

a bandwidth challenge for the downstream perception sys-

tem. For example, an HD lidar of 3 million points per

frame is equivalent to 40 times that of a Velodyne™ VLP-
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Figure 1. The curve of inference time vs. object detector’s recall

rate using KITTI dataset (Geiger et al., 2012). The curve is plotted

by sweeping the input point cloud’s subsampling rate from 0.1 to

1.0 with a step size of 0.1. Only 10% points are used in object

detection in the leftmost of the curve, while the rightmost of the

curve corresponds to 100% points used.

32, which indicates the object detection needs 40 times the

computing capacity as that required by a Velodyne™ lidar

if PointRCNN (Shi et al., 2019) is used. Figure 1 shows the

characteristic curve of inference time vs. object detector’s

performance by sweeping the input lidar points’ density

from low (left) to high (right). The lower and further right,

the better, which means we have fast execution and high

accuracy. From the curve, one can see an increase of reso-

lution significantly improves the detector’s recall rate but

at the cost of longer inference time. Another similar, yet

less expensive, tactic is to use mixed-resolution to process

the lidar point cloud at a downscaled resolution and a small

region of interest (ROI) window (i.e., the red rectangle in

Figure 2(a)) at a higher resolution. This approach mimics

human foveal vision (Corbetta & Shulman, 2002; Almeida

et al., 2017) and requires a smaller computing budget while

allowing HD detections in the relevant critical regions to

boost performance. Figure 2(b) shows that a sweet-spot of

the trade-off between computing efficiency and detection

effectiveness can be found. However, the approach may fall

short if we do not ensure that the HD ROI is being taken

from the most suitable area in the FOV of a lidar (e.g., places

where small objects are located, etc.).

Attention techniques typically fall into two categories:

bottom-up and top-down attention models. A bottom-up at-
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(a)
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Figure 2. (a) The mixed-resolution scheme for the lidar sensor: a

standard-definition (SD) resolution for background and a high-

definition (HD) resolution for the most relevant region, a.k.a, at-

tention. (b) The attention-enabled mixed-resolution scheme is a

trade-off between computing efficiency and detection performance.

tention model uses features or characteristics from the scene

to derive its attention. A classic illustration of bottom-up

attention involves a human subject having their attention

drawn to a single horizontal bar in a scene filled with ver-

tical bars (Treisman & Gelade, 1980). Top-down attention

models, on the other hand, are based on prior knowledge and

are based on goals, expectations, and/or rewards (Yarbus,

2013).

Quickly and automatically detecting relevant areas of a

scene through bottom-up attention models is an appealing

capability for machine vision (Milanova & Mendi, 2012).

Numerous studies in recent years have used bottom-up at-

tention models for the tasks of object segmentation, object

recognition, image captioning, and visual question answer-

ing (Chen et al., 2017; Xu et al., 2015; Singh et al., 2018;

Chen et al., 2015). These methods typically use convo-

lutional neural networks and/or recurrent neural networks

to identify the attention region – which is not favorable

for safety-critical systems with real-time constraints due to

additional computing needs. Another common bottom-up

approach is to identify salient regions in the image (Cheng

Figure 3. The proposed agent view of the attention-based sensing

scheme. The attention agent is rewarded or penalized depending

on whether the object detector’s key performance index (KPI)

improves.

et al., 2014; Anderson et al., 2018; Harel et al., 2007). How-

ever, for autonomous driving, salient regions are not neces-

sarily the most relevant regions of the scene. Salient regions

often identify the most conspicuous objects in the scene;

however, these objects do not require HD sensing as they

could also be detected with low-resolution sensing. Instead,

relevant regions in a roadway scene can include small dis-

tant objects such as an upcoming traffic light or pedestrians

crossing at a forthcoming crosswalk.

Although the majority of attention models use a bottom-up

approach, it is widely accepted that top-down factors play

a crucial role in attention guidance (Henderson & Holling-

worth, 1999). A recurrent attention model (RAM) and

deep recurrent attention model (DRAM) were proposed

to mimic human attention and have demonstrated promis-

ing results for the tasks of image classification and digit

recognition (Mnih et al., 2014; Ba et al., 2014). Additional

saliency-based techniques have also taken a top-down ap-

proach to derive attention and predicting human gaze (Hou

et al., 2017; 2018; Xia et al., 2020). Finally, spatial trans-

formers have been used as an attention mechanism for digit

classification tasks due to their advantage of being fully

differentiable (Jaderberg et al., 2015; Mendi & Milanova,

2010).

Taking inspiration from recent advances in deep reinforce-

ment learning (RL) (Li, 2017), as well as aspects from both

bottom-up and top-down attention models, we present a

lightweight RL agent that intelligently places the ROI win-

dow in the most relevant area and demonstrate its benefit

on the task of object detection on roadway scenes. This

approach is a hybrid between bottom-up and top-down at-

tention because it uses low-level features as its input, but

is trained to achieve a high-level goal through the agent’s

reward function, shown in Figure 3. To the best of our

knowledge, this may be the first study of applying attention

mechanism to 3D lidar based object detection for the trade-

off between computing efficiency and effectiveness (high

detection rate).

As a summary, we list the novelties of the approach as
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below:

• Attention behavior emerges based on the reward re-

ceived from the external environment in an end-to-end

manner.

• Self-contained, directly use the lidar’s point cloud as

the only input to determine the attention signal.

• The perception’s (i.e., object detection) performance

characteristics are explored via reinforcement training

to place the ROI window to locations such that the

overall detection performance is boosted.

• Hybrid between top-down and bottom-up attention.

• The scheme is simplistic and resilient, applicable to

different sensor modalities (i.e., lidar point cloud, radar

points, and camera image).

• An optimized technique to address the trade-off be-

tween computing efficiency and detection effective-

ness.

2. METHODOLOGY

We present RL based attention technique in which the re-

quired computing resources are substantially reduced while

the perception performance is retained. Figure 3 shows the

agent view for the proposed approach in which human-like

foveal behavior is emulated in a bi-directional process. In

this scheme, the point cloud Pt is captured from the lidar

data stream and passed on to the attention-based subsam-

pling mechanism. The subsampling mechanism takes the

attention signal as input and downscales the full FOV frame

to a background resolution while keeping the resolution

inside the attention window intact. It then passes along the

generated mixed-resolution data P̌t to the attention agent

and the object detector. The attention agent then identifies

the most relevant region inside the FOV and passes that back

to the attention-based subsampling module in the form of

an attention signal for the next time cycle. Finally, object

detection is performed on the mixed-resolution point cloud

P̌t, and the objects are generated.

During the training phase, the final objects are compared

with the ground truth to evaluate whether the quality of

the generated attention signal has improved. The agent

is rewarded if the detector’s key performance index (KPI)

improves. Otherwise, the agent is penalized.

2.1. RL-BASED ATTENTION AGENT

The first step to developing the RL-based attention agent

is establishing its action space. The action of the attention

agent A∗

t is simply the selected location of the attention win-

dow’s centroid (i.e., x and y locations in image coordinates)

within the forward-facing camera frame. The lidar points are

transformed to/from the camera’s image plane to determine

which points are within the attention region. To simplify the

action space, we discretized the FOV into Nx ×Ny blocks.

Then, a fixed-size attention window RNx
× RNy

is deter-

mined based on the given action, A∗

t , taking discrete values

from (Nx −RNx
+1)× (Ny −RNy

+1) blocks. Figure 4

depicts the discretized grid and the attention agent’s action

space within the forward-facing camera frame.

Figure 4. Depiction of the discretized grid, attention region (blue),

the centroid of attention region (orange), and action space (red).

The action space does not encompass the entire FOV to ensure the

attention region does not ever extend beyond the FOV boundary.

The attention/perception module shown in Figure 5 is mainly

comprised of a PointNet-based object detection (OD) net-

work (Shi et al., 2019) and a deep neural network imple-

mented the attention agent. Figure 5 shows a detailed view

of how the attention and perception modules fit into the

overall workflow. The attention and perception modules

share the same backbone network to compute the semantic

feature tensor Xt. Object detection is performed sequen-

tially through the stages of region proposal generation, point

cloud region pooling, and final 3d bounding box refinement

and classification confidence regression. The output of the

attention agent is either the anticipated reward or the proba-

bility distribution of each possible action At from the action

space (Nx − RNx
+ 1)× (Ny − RNy

− 1) blocks in Fig-

ure 4. In DQN, the argmax of this matrix is then taken

to obtain the attention signal, A∗

t . In policy gradient (PG),

A∗

t is the random draw from the probability distribution

of the action space. Finally, based on this attention signal,

the mixed-resolution point cloud P̌t is subsampled from

the original point cloud Pt, passed to the OD network, and

the final detected objects are outputted for the downstream

functional modules.

The attention agent’s architecture consists of two branches,

which are fully connected neural networks comprised of one

hidden layer. One branch is used to determine the attention

window’s x location, while the other branch is used to de-

termine the attention window’s y location. Figure 8 depicts

the architecture of the DQN. The input to the DQN is the
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Figure 5. Detailed view of the attention/perception module and how it fits in the overall workflow. Note that the attention agent and object

detectors share the backbone network providing the semantic feature Xt.

feature tensor from the object detection backbone. This

feature tensor is then flattened and passed to two distinct,

fully connected networks. The first network outputs an ar-

ray with size Nx. This output’s maximum value represents

the predicted column for the attention window’s centroid

to maximize the reward. The second network outputs an

array with size Ny. This output’s maximum value repre-

sents the predicted row for the attention window’s centroid,

maximizing either the probability or the reward.

Figure 6. The reinforcement learning agent’s network architecture

consists of two fully connected branches – one to predict the

attention window’s x location, and the other to predict the attention

window’s y location.

One can note that a computationally efficient light-weight ar-

chitecture implements the RL-attention agent whose add-on

cost is negligible compared to the object detection pipeline

in Figure 5.

2.2. TRAINING PROCESS

This work evaluates two reinforcement learning algo-

rithms: deep Q network (DQN) and policy gradient net-

work (PG) (Li, 2017). Despite DQN and PG’s differences

in training procedures, their inference network architecture

is similar, as shown in Figure 6, with some minor differ-

ences in the final output layer. In DQN, the outcome is the

anticipated reward of each possible action, while in PG, the

outcome is the probability of each possible action.

2.2.1. DQN AGENT

We use standard techniques for training the DQN, but with a

few minor adjustments. The DQN is trained to approximate

a function that can predict Q-values, which are a measure of

the agent’s expected reward, given an action At, state Xt−1,

and network parameters θ. The policy which governs the

agent’s actions, πθ(At, Xt−1), is an epsilon greedy policy

around the function A∗

t = argmaxAt
Q(At, Xt−1). This

policy is used to improve training stability and increase the

likelihood of convergence.

The DQN was trained using the point cloud from the KITTI

dataset (Geiger et al., 2012). The point-cloud frames in

the KITTI dataset are not sequential, and hence each frame

could be considered independent from the next. Therefore, a

replay memory was not needed to randomly sample data to

ensure de-correlated batches. Also, as a result of temporally

independent data, the discount factor, γ, was set to be 0. The

discount factor is a constant between 0 and 1 that determines

how the agent adjust future rewards – i.e., a discount factor

of 0 will reward the agent simply based on the instantaneous

reward. At the same time, a value closer to 1 will give more

significance to expected rewards in the future. Since our

DQN essentially operates on a frame-by-frame basis, our

agent is only concerned with maximizing the reward for the

current frame, and therefore, the discount factor is set to 0.

With a discount factor of 0 (γ = 0), the original training

rule (as shown in Eq. 1) simplifies to Eq. 2.

Qπ (X,A) = r + γQπ(X ′, π (X ′)) (1)

Qπ (X,A) = r (2)

δ = Qπ (X,A)− r (3)

In the above equations, Qπ(X,A) are the Q-values accord-
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ing to policy π, given state X and action A. The reward is

represented as r, and the expected future state is X ′. The

difference between the two sides of the equality in Eq. 3

is the error, δ, that we minimize during training. Since the

DQN has two branches, one for the attention window’s x

position and the other for its y position, the network pro-

duces two sets of Q-values for each batch during training.

Therefore, we get two error values, δx and δy . Using an L1

loss function, we show the final training loss in Eq. 4, where

B is the batch size.

L =

B
∑

i=0

|δx|+ |δy| (4)

A simple reward function is implemented to train the RL

agent. This reward function compared the number of true

positive detections before applying the attention window,

TP, to the number of true positive detections after applying

the attention window, TP′. If using the attention window re-

sulted in more true positive detections, then the reward is +1.

If using the attention window resulted in the same amount of

true positive detections, the reward is 0. Finally, if using the

attention window resulted in less true positive detections,

the reward is -1. This reward function is summarized in

Eq. 5 below.

r =







−1
0
1

if TP′ − TP < 0
if TP′ − TP = 0
if TP′ − TP > 0

(5)

We design the reward function to maximize true positive

detections of any object simply. The results show that the

RL agent learned to seek small, distant vehicles using its

attention ROI window. This behavior is due to vehicles

being the dominant class in the KITTI dataset. However, a

more sophisticated reward function can easily be tailored

to give more significance to other classes of more interest.

Furthermore, additional post-processing techniques could

be implemented to provide more importance to other regions

based on other available information sources, such as maps,

path planning, etc.

Additional details regarding the training process, such as

the DQN’s behavior before and after convergence, can be

found in Appendix.

2.2.2. POLICY GRADIENT (PG) AGENT

Standard techniques are used for the PG agent. The agent

predicts the probability distribution (i.e., multinomial distri-

bution) of action At over the agent’s action space from

the belief state Xt−1 of the previous time cycle using

the function approximator (see Figure 5) to approximate

πθ

(

At|Xt−1

)

where θ is the parameters (weights) of the

PG network.

3. RESULTS

3.1. EXPERIMENTAL SETUP

The RL-based attention mechanism was tested on both se-

quential and non-sequential data. For non-sequential data,

only a single point cloud frame was used throughout the

attention workflow. In other words, the attention window

is applied to the same point cloud frame that provided the

input feature tensor to the network architecture in Figure 5.

However, for sequential data, this process spans two frames,

so that the frame at time t− 1 is used to generate the atten-

tion window that is applied to the frame at time t. At is the

action taken by the attention agent (i.e. the location of the

attention window), Pt is the input point cloud at time t, P̌t is

the corresponding subsampled frame with mixed resolution

(i.e., lower background resolution for peripheral and higher

resolution in attention window), Xt is the derived feature

tensor, KPI′ and KPI are the key performance index with

and without attention, and the reward rt is the delta between

the two KPIs, i.e., rt = KPI′ − KPI.

The work uses the KITTI Velodyne™ dataset containing

about 7500 independent frames for both the training and test

datasets. We trained the DQN agent and PG agent using the

frames in the training dataset. In this study, the discretized

action space is defined as shown in Figure 6 where Nx = 70
and Ny = 26, and the fixed-size attention window size

RNx
= 20 and RNy

= 8. Therefore the potential action

takes a discrete value from the 51× 19 red grid.

3.2. NON-SEQUENTIAL DATA

The following performance evaluation is reported using the

separated test dataset. The experimental setup consists of

comparing the PointRCNN vehicle detector’s performance

at four subsampling policies: baseline, random policy, DQN

attention policy, and PG attention policy, shown in Figure 7.

The baseline is simply a uni-resolution scheme where we

subsample the input point cloud with an inclusion probabil-

ity sweeping from 0.1 to 1 (all included). The random policy

is another baseline where the mixed-resolution scheme is

used, but the attention window’s centroid is randomly placed

in the lidar FOV. Figure 7 (c) and (d) show the result under

DQN and PG attention policies, respectively.

The recall rate at IOU 50% is used as the performance

metric for this study. Inference time was also used as a

secondary performance metric. The performance curves

are plotted in Figure 8 from left to right by sweeping the

sampling probabilities from 0.1 to 1, respectively. Like in

Figure 1, the lower and further right, the better, which means

we have both fast execution and high accuracy. Figure 8

shows that the random policy is slightly better than the

baseline since the mixed resolution provides a bit more

points. The DQN and PG policies’ performance is similar
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(a) Baseline (b) Random policy

(c) DQN attention policy (d) PG attention policy

(e) Baseline

(f) DQN attention

Figure 7. (a)-(d) The vehicle detector performance vs. execution time by sweeping point density. Points denote the number of points

sampled from the input point cloud. The detector performance is reported using the recall rate at IOU 50%. FPS is frames per second,

and the unit of inference time is milliseconds. (e) Detected vehicles by the baseline without attention. (f) Detected vehicles using DQN

attention policy. The gray rectangular box denotes the attention window where higher point density is kept.

but substantially superior to an agent with random policy or

no attention case. Figure 8 demonstrates that our approach

either improves the detector’s recall rate up to 20 percent

under the same inference time or shortens the inference time

up to 15 percent under the same recall rate.

Figures 7(e)-(f) show an illustrative example. The left part

of the image shows a perspective view of the point cloud.

In the right part, the point cloud detections are overlaid in

the registered forward-view camera image. Green and red

bounding boxes denote the ground truth and actual detected

vehicles, respectively. As shown in subfigure (e), we use

6.6k points as input to the baseline configuration, and red

bounding boxes plot the detected vehicles after an inference
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Figure 8. Performance curves: inference time of the four policies:

baseline, random, DQN attention, and PG attention as a function

of the detector performance (recall) for the KTTI dataset. The

performance curves are plotted from left to right with an increasing

point density.

time of 57 milliseconds. Notice that two remote vehicles are

not detected, annotated by two bold red arrows. Meanwhile,

in subfigure (f), the DQN attention policy is applied with

a total of 5.3k points and 53-millisecond inference time,

the two remote vehicles are reliably detected. This specific

example illustrates that we can better detect vehicles by

using fewer points than the baseline if the proposed attention

policy is applied. Thus, the perception module runs faster.

3.3. SEQUENTIAL DATA

A similar test evaluation study was conducted on the fol-

lowing a sequential lidar dataset 2011 09 29 drive 0004.

This drive was in the dataset’s Road category and was on a

rural 3-lane road with moderate traffic, no intersections. See

Figure 9 for the results. In the sequential dataset, better per-

formance boosts are observed than that of the non-sequential

dataset. For example, in Figure 9, we can see either improv-

ing the detector’s recall rate up to 36% under the same

inference time or shortening the inference time up to 37%

under the same recall rate.

The results demonstrate that the proposed attention mech-

anism can significantly boost detection performance while

keeping the same processing time or reducing the process-

ing time while maintaining the same detection performance,

as shown in Figure 8 and Figure 9. This performance boost

or computing efficiency is achieved by sampling the input

point cloud using a mixed resolution. We expect the agent

Figure 9. Performance curves: inference time of the three policies:

baseline, random, and DQN attention as a function of the detector

performance (recall).

to place the attention window to a region inside the FOV

such that faraway vehicles are enclosed in the window.

(a)

(b)

Figure 10. Two snapshots of the attention window. The attention

window, the gray rectangular box, is overlaid in the FOV of the

forward-view camera.

Figure 10 shows two cases of where the attention windows

are located. Note that the attention window is placed to

regions such that the HD density will boost the detection

performance. Please note that the attention window genera-

tion is self-contained; namely, the attention is derived from

the attention agent’s understanding of the scene from point

cloud input. From the figure, the agent predicts the area

enclosing small vehicles and places the attention window

to cover the area since the agent has been rewarded most in

the training.
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Another perspective we need to discuss is the comparison

between the random policy and the attention agent policies.

Although the random case employs mixed-resolution and

has the same input size as the proposed attention, Figure 8

and Figure 9 show that the random case’s performance is

similar to that of the baseline and significantly inferior to

that of the attention agents.

4. CONCLUSIONS

Reinforcement learning (RL) was used to train a detector

that process only relevant lidar points by emulating human

attention: lower resolution for peripheral and higher HD

resolution to cover critical areas (e.g., task-relevant and con-

taining small objects). The evaluation results identified the

sweet-spot of the trade-off between computing efficiency

and detection effectiveness. Key contributions for the pro-

posed attention module include:

• Hybrid between bottom-up and top-down attention

• Simple, resilient, emerged from the reward received in

an end-to-end manner, and self-contained with input

only from perception

• Reduced bandwidth requirement while not compromis-

ing perception performance

• Negligible add-on cost

APPENDIX

Figure 11(a) shows the average loss for each epoch during

training. The loss function is defined in Eq. 3 as the L1

norm and is descending along with the increasing epochs,

and we expect these values to converge to the same number

as training progresses. The value converges to around 0.3.

Figure 11(b) shows the average Q value for each epoch

during training.

At the beginning of training, the agent’s behavior appears

randomly. Figure 11(c) shows the Q-values of the attention

window’s locations for a given batch at the first training

epoch. In this image, whiter regions indicate the actions

with higher Q values that correspond to the attention region

being placed in these locations more frequently – the whiter

the region, the more frequently the attention window was

placed there. As seen in the figure was relatively evenly

dispersed around the lidar’s field-of-view.

After convergence, the DQN agent’s behavior appears much

more consistent. Figure 11(d) shows the locations of the

attention window for the same batch after convergence. This

image shows that the attention window is fixated along

the range image’s horizon line. This behavior is sensible

because small, distant objects are most likely to appear near

the horizon line of the lidar’s FOV. Furthermore, we see

that the attention window most often seems to be slightly

left-of-center. The DQN learns to place its attention window

in that specific location due to the large number of small,

distant vehicles that often appear in the oncoming traffic

lane.
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value for each epoch during training. c) The image of the Q-values of the attention window’s locations for a given batch at the first

training epoch. The whiter the location, the higher the Q value for the agent to place the attention ROI at the location. d) The image of the

Q-values for the same batch after convergence.
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