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Abstract
Simulators offer the possibility of scalable devel-
opment of self-driving systems. However, current
driving simulators exhibit naı̈ve behavior models
for background traffic. Hand-tuned scenarios are
typically used to induce safety-critical situations.
An alternative approach is to adversarially perturb
the background traffic trajectories. In this paper,
we study this approach to safety-critical driving
scenario generation using the CARLA simulator.
We use a kinematic bicycle model as a proxy to
the simulator’s true dynamics and observe that
gradients through this proxy model are sufficient
for optimizing the background traffic trajectories.
Based on this finding, we propose KING, which
generates safety-critical driving scenarios with
a 20% higher success rate than black-box opti-
mization, which previous work relies on. Further-
more, we demonstrate that the generated scenarios
can be used to fine-tune imitation learning agents,
leading to improved collision avoidance.

1. Introduction
After years of steady progress, autonomous driving systems
are getting closer to maturity (Janai et al., 2020). Due to the
high consequences of failure, they have to satisfy extraordi-
narily high standards of robustness in the face of unseen and
safety-critical scenarios. However, real-world data collec-
tion and validation for these situations lacks the necessary
scalability (O' Kelly et al., 2018; Norden et al., 2019). To
cover this long-tail of driving scenarios, simulation is a
promising solution. Unfortunately, current simulators such
as CARLA (Dosovitskiy et al., 2017) build on simple be-
havior models for background agents and do not provide
the necessary diversity in traffic. This poses a major chal-
lenge in the adoption of driving agents trained in simulation
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Figure 1. Generating safety-critical scenarios. Left: we propose
KING, a novel gradient-based procedure for the generation of
safety-critical perturbations of initial non-critical scenarios. Right:
fine-tuning on these perturbations leads to a more robust agent.

using imitation learning (IL) (Pomerleau, 1988; Bojarski
et al., 2016; Codevilla et al., 2018; 2019; Zhou et al., 2019;
Ohn-Bar et al., 2020; Prakash et al., 2021; Chitta et al.,
2021) or reinforcement learning (RL) (Chen et al., 2021;
Toromanoff et al., 2020), which are often brittle to o.o.d. in-
puts (Filos et al., 2020). To induce safety-critical situations,
hand-crafted scenarios are typically added to the simulation.
Unfortunately, the scenarios have to be manually re-tuned
to each driving agent, limiting scalability.

Recent work (O' Kelly et al., 2018; Abeysirigoonawardena
et al., 2019; Ding et al., 2020; 2021; Wang et al., 2021;
Priisalu et al., 2022) has framed the problem of generating
safety-critical scenarios through the lens of adversarial at-
tacks, iteratively simulating the scenario and adjusting its pa-
rameters to increase a driving cost wrt. to the driving system
under test. As simulators and self-driving stacks are often
non-differentiable, these approaches have resorted to black-
box optimization (BBO). In this work, we instead propose
KING1, a procedure that generates safety-critical scenarios
via backpropagation. Through a simple approximation to the
true gradient, KING can handle non-differentiable rendering
functions and driving systems, while finding safety-critical
perturbations more reliably than BBO-based alternatives.
We use the generated scenarios fine-tune an end-to-end IL
agent and show that this leads to improved robustness, re-
ducing collisions by over 50%.

1https://lasnik.github.io/king/

https://lasnik.github.io/king/


KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients

Figure 2. Gradient paths. To simulate a scenario, we render an observation ot for the driving policy πω under attack using a rendering
function R. Both the driving policy and adversarial agents then take actions. The actions of the ego agent a0

t depend on the observation
and a goal location xgoal. The actions of the adversarial agents ai>0

t are the parameters to optimize over to a safety-critical perturbation.
Given the actions for all agents and current traffic state st, the next state st+1 is computed using a differentiable kinematics model κ.
Gradients from the cost at time t can then be propagated back to states at preceding timesteps. As shown, the derivative has components
along two paths: an efficient direct path and a compute-intensive indirect path.

2. Safety-Critical Scenario Generation
We now outline our overall approach to the gradient-based
generation of safety-critical scenarios for stress-testing and
improving the robustness of IL-based driving agents.

Driving Agent. As the driving agents we consider (1)
AIM-BEV, a neural planner acting on ground-truth bird’s-
eye view (BEV) visual abstractions similar to the AIM-VA
model in (Chitta et al., 2021) and (2) TransFuser (Prakash
et al., 2021), a state-of-the art image and LiDAR-based IL
model. Formally, they are represented as a parameterized
policy πω that takes in an observation ot ∈ RHo×Wo×Co

and goal location xgoal ∈ R2 indicating the intended high-
level route on the map, and plans a trajectory represented
by four future 2D waypoints w ∈ R4×2:

πω (ot,xgoal) : RHo×Wo×Co × R2 → R4×2. (1)

For AIM-BEV, ot is a BEV semantic occupancy grid encod-
ing information on the road, lanes and other vehicles. For
TransFuser it consists of camera and LiDAR data. Based on
the predicted waypoints, the final actions a0t ∈ [−1, 1]2 in
the form of throttle and steering commands are produced by
lateral and longitudinal controllers. Both models are trained
on observation-waypoint pairs (o,w) drawn from a dataset
Dreg of expert driving in regular traffic.

Safety-Critical Perturbation. To optimize for safety-
critical perturbations of a non-critical scenario, we itera-
tively simulate it in closed-loop and adjust its parameters to
be more challenging for the driving agent (or ego agent) un-
der test. Importantly, as the scenario is simulated in closed
loop, the ego agent can react to these perturbations.

Let S = {st}T0 be a sequence of traffic states instan-
tiating a particular simulation, where st consists of the

BEV position, orientation and speed of all agents at time t.
Then, a simulation is unrolled based on a kinematics model
st+1 = κ(at, st). Based on this framework, a scenario is pa-
rameterized by the sequence of actions

{
ai>0
t

}T

t
executed

by other traffic participants (or adversarial agents), which
determines their trajectory. The actions of the ego agent
are obtained from the driving policy by rendering an obser-
vation ot of the current state st using a rendering function
ot = R (st,M), whereM is a map describing the static
aspects of the simulation. To find a safety-critical pertur-
bation, the scenario’s parameters are optimized to increase
a driving cost C wrt. the ego agent, which is motivated by
prior work (Abeysirigoonawardena et al., 2019; Ding et al.,
2020; Wang et al., 2021):

C(S) = φegocol (S) + λ φadvcol (S) + γ φadvdev (S). (2)

Here, collisions involving the ego agent are encouraged via
an attractive potential φegocol , and collisions between adversar-
ial agents and deviations of the adversarial agents from the
driveable area are discouraged via the repulsive potentials
with φadvcol and φadvdev . This is similar to commonly used cost
functions in planning (Zeng et al., 2019; Sadat et al., 2020;
Casas et al., 2021).

Kinematics Gradients: Given that the sequence of states
S is unrolled based on the differentiable kinematics model,
we can backpropagate costs at any timestep t to the set of
actions {at−1,at−2, ...,a0} at previous timesteps. In the
full unrolled computation graph of the simulation, partial
derivatives of the cost at any timestep can be taken wrt. the
actions in preceding timesteps by recursively applying the
chain rule along two paths: a direct path through only the
kinematics model and an indirect path, which additionally
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1 Agent 2 Agents 4 Agents Overall

Method CR ↑ t50% ↓ s/it ↓ CR ↑ t50% ↓ s/it ↓ CR ↑ t50% ↓ s/it ↓ CR ↑ t50% ↓ s/it ↓
Random Search 62.50 9.25 1.30 68.75 7.38 1.35 68.75 15.22 1.48 66.67 9.66 1.38
Bayesian Optimization 63.75 11.88 1.46 68.75 10.01 1.66 63.75 22.12 2.06 65.00 14.34 1.73
SimBA (Guo et al., 2019) 60.00 14.14 1.30 71.25 14.35 1.35 61.25 19.68 1.48 64.17 15.84 1.38
CMA-ES (Hansen & Ostermeier, 2001) 67.50 9.34 1.31 75.00 6.73 1.36 62.50 9.39 1.52 68.33 8.17 1.40
Bandit-TD (Ilyas et al., 2019) 37.50 - 3.87 30.00 - 4.39 21.25 - 5.02 29.58 - 4.43

KING Direct + Indirect 78.75 19.33 3.17 72.50 14.68 3.25 76.25 14.67 3.40 75.83 16.14 3.27
KING (Ours) 86.25 9.98 1.78 82.50 6.96 1.88 78.75 6.40 2.03 82.50 7.78 1.90

Table 1. Critical scenario generation on CARLA. Mean CR, t50% and s/it for different optimization techniques in three traffic settings,
as well as aggregated metrics. KING finds collisions in over 80% of the initializations, significantly outperforming all baselines. Using
only the direct path (Ours) leads to the highest CR and is faster than using gradients from both the direct and indirect paths.

Held-out KING scenarios CARLA scenarios

Dataset CR ↓ DS ↑ CR ↓
No Fine-tuning 100.00±0.00 86.74±0.67 17.48±1.86

Dreg 57.14±0.00 86.85±0.62 19.51±0.00

Dcrit ∪ Dreg 28.57±0.00 90.20±0.00 8.13±0.70

Table 2. Robust training for AIM-BEV. Results shown are the
mean and std over 3 evaluation seeds.

involves the driving policy πω and renderer R. This is
illustrated in Fig. 2.

With KING, we propose an approximation to the true gradi-
ents, which only considers the direct path and stops gradi-
ents through the indirect path. While this introduces an error
in the gradient estimation, we empirically find it to work
well while leading to several advantages. Firstly, it enables
gradient-based generation in the common case where the
rendering function or driving policy is non-differentiable,
preventing gradients to be taken wrt. the indirect path. Sec-
ondly, even when all components are differentiable, taking
gradients wrt. to the indirect path involves backpropagating
through the driving policy and rendering function (dotted
red arrows in Fig. 2) - a significant computational overhead.
We investigate this setting for AIM-BEV where both the
driving policy and rendering function are differentiable in
Section 3.1 and show that given a fixed computational bud-
get, this overhead leads to results worse than KING. We
hypothesize that utilizing gradients through both paths be-
comes more important as the driving policy becomes robust
to attacks.

Robust Training for IL: We are further interested in
improving robustness by augmenting the original training
data with the generated safety-critical scenarios. To this end,
we pursue a simple yet effective strategy: (1) we generate a
large set of safety-critical scenarios, (2) we filter these for
scenarios in which a priviliged rule-based expert algorithm
finds a safe alternate trajectory, (3) we collect a dataset of
observation-waypoint pairs Dcrit using the expert, and (4)
we fine-tune the policy πω on a mix of the safety-critical
data Dcrit and the original dataset Dreg.

3. Experiments
We now present the research questions we aim to answer in
our experimental study.

Can gradient-based attacks outperform black-box opti-
mization (BBO) for safety-critical scenario generation?
We are interested in reducing the optimization time needed
to take a set of non-critical scenario initializations and find
interesting scenarios. Given the computational overhead of
computing gradients and performing a backward pass, we
analyze the gains that can be achieved for this task with
gradient-based attacks over BBO in Section 3.1.

Are gradient-based attacks applicable to non-
differentiable simulators? Our main experiments
are conducted using a differentiable simulator that renders
the BEV grid inputs for AIM-BEV. In Section 3.1, we
aim to investigate the applicability of KING to non-
differentiable rendering functions, such as CARLA’s
camera and LiDAR sensors.

Can we improve robustness by augmenting the training
distribution with critical scenarios? We are interested in
the analyzing robustness of the fine-tuned IL model that
uses the data augmentation strategy described in Section 2.
In Section 3.2, we investigate this on both the regular bench-
mark (hand-crafted scenarios) and held-out safety-critical
test scenarios generated by KING.

3.1. Comparison to BBO

In this section, we analyze the efficacy of KING for gener-
ating safety-critical scenarios, by comparing it with several
BBO baselines.

Experimental Setup. As initializations we use 80 scenar-
ios accross several CARLA towns with non-critical traffic
that mimics the behaviour in CARLA. We explicitly control
the traffic density at one, two and four adversarial agents
and use a simulation horizon of 20 seconds. The scenario
generation is evaluated using three metrics: (1) the collision
rate (CR), which is the number of initializations for which
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Figure 3. Collision types. We observe that KING generates a di-
verse set of challenging but solvable scenarios.

a critical perturbation was found within a computation
budget of 180 GPU seconds (2) the time taken to achieve
50% CR (t50%) and (3) the runtime needed to complete
one optimization step (s/it). We specifically opt for a
computational budget in terms of wall clock time rather
than iterations to account for the differing computational
expense between the methods.

Results. We compare KING against several BBO base-
lines in Table 1. In particular, besides Random Search and
Bayesian Optimization, we consider SimBA (Guo et al.,
2019), CMA-ES (Hansen & Ostermeier, 2001) and Bandit-
TD (Ilyas et al., 2019). SimBA is a variant of Random
Search that greedily maximizes the objective and CMA-ES
is a state-of-the-art evolutionary algorithm. Finally, Bandit-
TD computes numerical gradients by integrating priors into
a finite differences approach.

KING obtains a significantly higher CR than the BBO base-
lines in all traffic densities, increasing the number of sce-
narios for which a safety-critical perturbation is found by
over 20%. Among the BBO baselines, CMA-ES attains the
best overall scores with respect to both CR and t50%. In-
terestingly, as we increase the traffic density to four agents,
there exists a large gap in the t50% between KING and all
baselines, highlighting the limitations of BBO in scaling
to higher dimensional search spaces. Additionally, we find
that our proposed gradient approximation is reasonable, and
due to the lower computational expense even outperforms
the exact gradient (direct + indirect path) given the same
computational budget.

Analysis of Safety-Critical Scenarios. In this section, we
provide additional analysis on the safety-critical scenarios
generated by KING for both AIM-BEV and TransFuser.
Specifically, we show the distribution of the resulting sce-
narios with a traffic density of N = 4 agents in Fig. 3. For
both driving agents, we first filter out the set of scenarios
where KING is unable to find a collision (“No Collision”) as
well as those that are not solvable by the rule-based expert
(“Not Solvable”). We cluster the remaining scenarios using
k-means (similar to (Rempe et al., 2021)) to obtain 6 clus-
ters of failure modes such as cut-ins (a1), rear-ends (a2) and
unsafe behavior in unprotected turns (e,f). This highlights

(a) AIM-BEV (b) TransFuser (Prakash et al., 2021)

Figure 4. Qualitative examples of safety-critical scenarios gen-
erated by KING. Ego agent in red, adversarial agent in blue. Best
viewed zoomed in.

the diversity of the generated scenarios. Additionally, from
the frequency of scenarios with “No collision” in Fig. 3,
we observe that both AIM-BEV and TransFuser collide in
at least 80% of the scenarios. Finally, the large amount of
collisions for TransFuser indicate that KING can achieve
promising results when applied out-of-the-box to driving
simulators with non-differentiable rendering functions.

3.2. Evaluating Robustness after Fine-Tuning

Finally, we analyze the utility of the generated scenarios in
augmenting the original, non-critical training distribution to
yield more robust driving agents.

Experimental Setup. We use 300 scenarios generated by
KING, from which we hold out 20% for evaluation, and
fine-tune AIM-BEV as described in Section 2. We evaluate
the driving performance in terms of Collision Rate (CR)
and Driving Score (DS), the official CARLA Leaderboard
metric, on held-out KING scenarios as well as CARLA’s
hand-crafted scenarios in a dense urban setting. As baselines
we use the original model, as well as one that has been fine-
tuned on regular data only. This is intended to show the
effect of adopting an overall different - but not more robust
- driving style on the KING scenarios, which remain fixed
after optimization.

Results. As shown in Table 2, the simple strategy of fine
tuning on a mixture of critical and regular data Dcrit ∪
Dreg is an effective way of learning from the scenarios
generated by KING. After fine-tuning, AIM-BEV shows
significantly safer driving, reducing the collision rates on
CARLA scenarios by over 50%.

4. Conclusion
We propose a novel gradient-based safety-critical scenario
generation procedure, KING, which achieves significantly
higher success rates compared to existing BBO-based at-
tacks while being more efficient. By augmenting the training
data with scenarios from KING, we are able to significantly
improve the collision avoidance of an imitation learning-
based driving agent.
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