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Abstract
Traffic flow monitoring has become a crucial
yet challenging tasks in intelligent cities and au-
tonomous driving. As a crucial step to HD-Map
understanding, image segmentation under diverse
bird’s-eye-view scenarios has become increas-
ingly attractive to multidisciplinary researchers.
How to perform semantic segmentation while gen-
eralizing over multimodal background noise is
challenging yet fruitful. In this paper, we propose
a semi-supervised image segmentation framework
via image-to-image translation by using certain
domain knowledge in the birds-eye-view traffic
perception. Our framework can be summarized
as a hierarchical segmentation. First, we design
an image translation model to transform different
styles of the road to a unified style. Second, we
perform an adaptive vehicle detection based on a
non-learnable segmentation algorithm. Empirical
results show our methods outperform some fine-
tuned methods, and we rank top 10 of the small
vehicle segmentation (in IoU metrics) among all
the models on the leaderboard.

1. Introduction
Image segmentation is of crucial importance in massive vi-
sual understanding systems. The major task is to partition in-
put images into several segments or objects of interest. For-
mulated as a pixel-wise image classification problem, tradi-
tional methods apply brutal-force thresholding(Otsu, 1979),
K-means clustering(Dhanachandra et al., 2015), activate
contours(Kass et al., 2004), or Markov Random Field(Plath
et al., 2009) to segment the image data into different objects
according to some handcrafted features. These traditional
computer vision models, which use low-level features like
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contours to conduct the segmentation, are inclined to neglect
semantic styles in the images.

However, the accuracies of the above works are not sat-
isfying. With the prosperity of deep learning, a lot of
image segmentation frameworks have been proposed (Mi-
naee et al., 2020), including the encoder-decoder mod-
els(Badrinarayanan et al., 2017), the generative adversarial
networks (GANs)(Goodfellow et al., 2014), and regional
convolutional networks (R-CNN)(Ren et al., 2015)(He et al.,
2017), as well as some dilated convolutional networks(Yu &
Koltun, 2016). These methods, built on convolutional neural
networks, are using different scales of receptive fields to
capture hierarchical information in the entire images. Still,
there exist two major parts of challenges in the image seg-
mentation with current deep learning models.

The first challenge is the requirement of a full set of labels
to train the data-driven segmentation framework, which is
not always an efficient or even accessible way in real-world
applications, since labeling each frame of the traffic flow
can be extremely time-consuming or even impossible.

The second challenge is the multimodal nature of different
entities. For example, in the image classification task of the
traffic flow, the background of the road can have different
styles, and the illumination can differ due to the weather. In
order to achieve good segmentation results, one potential
way is to build a model that could encode such multimodal
styles, then transfer them to some unified style. Some ex-
isting works, like the image translation work, (Huang et al.,
2018) are trying to deal with such multimodality, but are not
fully applicable in our setting, since it transforms the style
from one multimodal distribution to another, which does not
lower the difficulty of image segmentation since it does not
give out invariant representation of the image.

In this project, we propose a weakly-supervised label-
efficient image segmentation framework via image-to-image
translation techniques between different domains, aiming
at disentangling foreground contents (car objects of our in-
terests) with background style (different roads) to achieve
satisfying detection effects within a given patch of the image.
Our method takes diverse vehicles/backgrounds as input,
then extract the content and separates it from the styles, and
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makes a style transfer to extract it from the background. The
extracted results will be evaluated by intersection over union
(IoU) metrics. We plan to train and compare our model per-
formance with region proposal-based image segmentation
baselines, including Faster-RCNN (Ren et al., 2015), and
Mask-RCNN(He et al., 2017).

2. Background and Related Work
We are relating our work with two common settings in
computer vision: image segmentation and image-to-image
translation. We summarize the related works below and
develop our own methods in the following sections.

Image Segmentation with Deep Learning. It’s a common
way to formulate image segmentation as a classification
problem. For instance, semantic segmentation performs
a pixel-level classification of different objects of interest,
which is a harder task compared to general image classifi-
cation since we need to assign each pixel a prediction at
the object level. A lot of deep learning-based methods have
been proposed in the past few years to tackle this prob-
lem, including Convolutional models with graphical models,
R-CNN-based models (Ren et al., 2015)(He et al., 2017),
Generative adversarial networks, (Goodfellow et al., 2014)
and so on. These methods, however, usually require fully-
supervised training to guarantee a satisfying performance in
image segmentation, while a full set of labels are sometimes
inaccessible in some real-world applications.

Unsupervised image-to-image Translation. Thanks to
the rapid development of deep generative models (DGMs),
Image-to-image translation starts with conditional genera-
tive adversarial networks (GANs), which is later used in gen-
erating high-resolution images in the selected target domain.
Based on the different demands in the target domain(Wang
et al., 2018), different attend to preserve different properties
to guarantee the quality of image translation, including pixel-
level features(Shrivastava et al., 2017)(Bousmalis et al.,
2017), semantic-level features(Taigman et al., 2016), class
label features(Bousmalis et al., 2017), and pairwise sample
contrastive features(Benaim & Wolf, 2017). Among all the
related literature, Unsupervised Image-to-Image Transla-
tion (UNIT)(Liu et al., 2017) and Multimodal Unsupervised
Image-to-Image Translation (MUNIT)(Huang et al., 2018)
propose a framework that separate the content from style,
then use the GAN-based loss in both the image and latent
space to train the image translation model that could handle
the multimodal settings across different domains. In this
work, our model shares a similar basic setting and training
fashion, while modifying the structure of latent space to
adapt to our image segmentation tasks.

3. Problem Setup and Methodology
We are aiming to conduct an image classification for ev-
ery pixel. Thus this can be formulated as multiple binary-
classification tasks, where the input of the model x ∈
RN×N×3 is an RGB image, and the output y ∈ RN×N

is a binary matrix that contains the information of whether
a pixel belongs to the vehicle or not. Notice here we are
not doing classification between different types of vehicles,
thus this is not as complex as object detection works. On
the contrary, we will give out an exact segmentation in the
shape of vehicles rather than a perpendicular bounding box
in the object.

The overall pipeline is represented in 1. Inspired by the
image translation works, we propose a disentangled rep-
resentation in content and style of feature space. We first
translate all the images with different backgrounds into a
similar target domain with identical background (e.g. green
or black background). To enforce the bidirectional encoder-
decoder model to capture the ’content’ information, which is
the foreground car while separating all the irrelevant ’style’
information, which is the multimodal road backgrounds, we
design two groups of loss in both pixels space and feature
space. The process of this encoder-decoder framework can
be written as:

Encoding: c = ϕ(c|x) ≜ ϕc(x), s = ϕ(s|x) ≜ ϕs(x)
(1)

Decoding: x̂ = fc(c) = fc(ϕc(x)) (2)

After we get a style-free birds-eye-view image with identical
background color, we apply the threshold masking in the
HSV color domain to get a raw mask for downstream image
segmentation. Since in practice, this mask is not very robust
due to the flaws in reconstruction, we use some domain
knowledge about cars (near rectangular, among a certain
range in size from the birds-eye-view map) to design another
automatic adaptive erosion-dilation algorithm (AEDA) to
improve the quality of the mask. After this procedure, the
model can directly get contours from the mask and conduct
segmentation. The process can be formulated as:

Thresholding: m = fthreshold(x̂) (3)
Adjusting: m̂ = fAEDA(m) (4)

Segmentation: y = fcontours(m̂) (5)

3.1. Image Translation for Background Removal

Generally, the image translation modules can have multi-
modal inputs with different styles of road backgrounds and
contents of vehicles (defined as source domain), and we aim
to transform them into the same contents with the desired
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Figure 1. Pipeline of the Overall Image Segmentation: We first design content-style disentangled representation modules inspired by
the style transfer in image translation works. After this, we are able to drop the style and generate style-free samples with the content-only
decoder. After this, we apply domain knowledge in the birds-eye-view vehicles in normal traffic scenes and design proper adaptive
masking techniques (non-learnable algorithms) to finish the segmentation tasks. The components of this two-stage framework are further
elaborated in the latter part of the methodology section.

style (defined as target domain) (Huang et al., 2018; Liu
et al., 2017) that is friendly to downstream segmentation
tasks. Specifically, our proposed translation framework is
constructed between raw bird-view images with various
background roads or entities and foreground vehicles, and
the target domain with various foreground vehicles, but with
preprocessed zero-valued masks1 on the background roads
as the fixed style, where we want to generate images with
only foreground vehicles.

As we can see in Fig. 2 we denote the source domain
of bird-view images as domain 1, and the target domain
as domain 2, our framework of image translation can be

1Preprocessed by Object Detection Baselines, such as Mask-
RCNN.

formulated as below: the source domain can be encoded
into both style and content latent embedding, while the
target domain (with identical background) will only have
content-based latent embedding. All the embedding will
engage in the reconstruction of raw images, while the cross-
domain image translation will be realized by mixing the
content of the source domain and the style of the target
domain.

The first group of loss is within individual domain 1 and 2,
in order to enforce a good quality of image reconstruction
in the original pixel space, we have the empirical risk for
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Figure 2. Zoom-out View of Image Translation: For the solid lines, we use two CNN-based encoders to encode the style and content
information of the raw image x1 = f(s1, c1), and a single content decoder for the masked image x2 = f(c2) (which is preprocessed by
using a certain portion of the label in the training data). Notice that images in this target domain only contain content related to car objects
of our interest without different road backgrounds. The training procedure includes a joint optimization in Part (a) reconstruction with
encoder-decoder framework, and Part (b) a content extractor and style-free image translation with feature decomposition and decoding.
Two types of dashed lines on both left and right side stands for the reconstruction and GAN loss in pixel space and feature space. And
we summarize them into two main categories: consistency in image representation and prediction, as well as realism of the extracted
style-free images.

Algorithm 1 Adaptive Erosion-Dilation Algorithm (AEDA)
Data: Style-free x̂, maximum objects Nobj , threshold of background color HSV −, HSV +, vehicle size S−, S+

Result: Multi-object Segmentation y ∈ RN×N

m← x
i← where(x ∈ [HSV −, HSV +]) /*Thresholding Raw Masks*/
m[i]← 0
C = Contours(m)
iter = 0
for c ∈ C and iter < Nobj do
iter ← iter + 1 /*Adaptive Erosion-Dilation Iterations*/
if Size(c) /∈ [S−, S+] then

while Size(c) < S− do
c← Erode(c)
m̂← m.update(c)
C = Contours(m̂)

end while
while Size(c) > S+ do
c← Dilate(c)
m̂← m.update(c)
C = Contours(m̂)

end while
end if

end for
y = PolytopeFilling(C)

the image reconstruction with L1 loss terms,

Lx1
recon = Ex1∼p(x1)[∥f

1(ϕ1
c(x2), ϕ

1
c(x1))− x1∥1] (6)

Lx2
recon = Ex2∼p(x2)[∥f

2(ϕ2
c(x1)))− x2∥1] (7)

The second group of loss is associated with the image trans-
fer, which is across domain 1 and 2. We have the empirical

risk for the content and style reconstruction with L1 loss
terms to guarantee the consistency of image representation
between two domains in latent space. Then we design an-
other adversarial loss term using GAN loss to guarantee the
translated image in both domains is as realistic as possible
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(to fool the discriminator).

Ls1
recon = Es1∼N (0,1),x2∼p(x2)[∥ϕ

1
s(f

1(ϕ2
c(x2), s1))− s1∥1]

(8)

Lc2
recon = Es1∼N (0,1),x2∼p(x2)[∥ϕ

1
c(f

1(ϕ2
c(x2), s2))− ϕ2

c(x2)∥1]
(9)

Lc1
recon = Ex1∼p(x1)[∥ϕ

2
c(f

2(ϕ1
c(x1)))− ϕ1

c(x1)∥1] (10)

Lx2
GAN = Ex1∼p(x1)[log(1−D2(f2(ϕ1

c(x1)))]

+ Ex2∼p(x2)[logD
2(s2)] (11)

Lx1
GAN = Es1∼N (0,1),x2∼p(x2)[log(1−D1(f1(ϕ2

c(x2), s1)))]

+ Ex1∼p(x1)[logD
1(x1)] (12)

where domain 1 (raw images) is associated with deconvolution
network based decoder f1(·, ·), CNN-based style (background)
encoder ϕ1

s(·), content (vehicle) encoder ϕ1
c(·) and discriminator

D1(·). Domain 2 (style-free images) is associated with reconstruc-
tion decoder f2(·) which takes only content as input, as well as
CNN-based content (vehicle) encoder ϕ2

c(·) and discriminator D2.

Finally, the total empirical risk minimaxition optimization problem
can be related to all the seven modules, formulated as:

min
f1,ϕ1

s,ϕ
1
c,f

2,ϕ2
c

max
D1,D2

Lx1
GAN + Lx2

GAN + λsLs1
recon (13)

+ λc(Lc1
recon + Lc2

recon) + λx(Lx1
recon + Lx2

recon)

where λs, λc, λx represents the tunable hyperparameters.

3.2. Adaptive Erosion-Dilation Algorithms (AEDA) for
Segmentation

After we get a style-free image from our special image translation
methods, the images are already friendly to the segmentation task.
However, due to the potential flaw in the image reconstruction, we
can use some adaptive algorithms by applying domain knowledge
in the vehicle size, then properly erode or dilate the masks that we
get from thresholding, then get our finalized segmentation results
as in 1. The fundamental idea of the AEDA is to guarantee that
each detected object is within a range of size.

4. Experiments
4.1. Evaluation metric

We will use the common measure, Intersection over Union (IoU),
as our evaluation metric. We denote TP as true positive (pixels
with object label that are also correctly predicted as object), TN
as true negative (pixels with non-object label that are correctly
predicted as non-object), FP as false positive (pixels with non-
object label that are falsely predicted as object), FN as false
positive (pixels with object label that are falsely predicted as non-
object).

IoU is defined as the ratio of the area of overlap between predicted
and ground-truth segmentation by the area of their union, i.e.,

IoU =
TP

TP + FP + FN
(14)

Besides IoU defined above, we also use other common evaluation
metric such as accuracy, average precision (AP), recall and F1
Score, which are defined as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F1 Score = 2 ∗ recall ∗ precision
recall + precision

4.2. Dataset and Preprocessing

We conduct a quantitative evaluation of the proposed method on
DOTA (Xia et al., 2018), an aerial image object detection dataset.
The original dataset contains 2806 aerial images from different
sensors and aerial platforms. Each image is of the size about
4000× 4000 pixels and contains objects exhibiting a wide variety
of scales, orientations, and shapes. In this project, we focus on
the segmentation of small vehicles only. We first crop the original
images to smaller images of size 144 × 144. We preprocess the
cropped images by only retaining the small vehicles in the image
and masking the rest of the image with green or black color. We
show some image samples in Fig 4. The training set contains two
subsets: trainA and trainB. trainA contains 10k masked images and
trainB contain the corresponding raw image. The test set contains
1k images of the same format.

4.3. Training

Hyperparameter We use a batch-size of 1, Adam learning
rate 1e−4, β1 = 0.5, β2 = 0.999, weight decay 1e−4, λs =
1, λc = 1, λx = 10. For the generator and discriminator, we use
64 filters in the bottom-most layer and MLP of hidden size 256.
We train the model for 1M iterations. More hyperparameters are
included in the config file in our code. For the AEDA module,
in green background, we choose the lower bound of HSV as [50,
100, 100] and the upper bound of HSV as [70, 255, 255]. In black
background, we choose the lower bound of HSV as [0, 0, 0] and
the upper bound of HSV as [20, 100, 30]. The maximum number
of vehicles in one image is 16, and the bound of the pixels of a
car given the 144 × 144 image is 200 ∼ 550 pixels. For better
understanding of the training process, we show a smoothed version
of the training curve in Fig. 5 using a moving average window of
100 iterations. We can see that with 1 million iterations, both the
generator and discriminator gradually achieve convergence.

4.4. Evaluation Results

We compare our methods with three different baselines, k-means
clustering (Dhanachandra et al., 2015), Faster-RCNN (Ren et al.,
2015)2, and Mask-RCNN(He et al., 2017) 3. Faster-RCNN com-
bines Region Proposal Network (RPN) and Fast R-CNN (Girshick,
2015) using the attention mechanism to enable convolutional fea-
ture sharing. Mask-RCNN extends Faster R-CNN by adding a
branch for predicting an object mask in parallel with the existing
branch for bounding box recognition.

Notice that the results we report in K-Means are the implementa-
tion with our AEDA methods. Even if we add extra tricks to it,
it is not comparable with our deep-learning-based methods illus-
trated in the table. Our methods show a slight advantage over the

2https://github.com/rbgirshick/py-faster-rcnn
3https://github.com/facebookresearch/Detectron
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Figure 3. Sample images in the DOTA dataset (Xia et al., 2018).

Figure 4. Samples of Training Datasets.

Figure 5. Training loss of reconstruction in image space, feature space, as well as GAN loss. We can see a convergence between generator
and discriminator after 1 million iterations.
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Figure 6. Segmentation results from multimodal source domain to unimodal target domain.

Figure 7. By-product of Translation framework: multimodal road generation for data augmentation

Figure 8. Generated images from the testing dataset.

Table 1. Main results
Methods IoU Accuracy Recall Precision F1 Score

K-Means 0.3110 0.9658 0.4059 0.7792 0.4412
Faster RCNN 0.5155 0.9739 0.6377 0.7167 0.6509
Mask RCNN 0.5668 0.9804 0.7660 0.6944 0.7086

Ours 0.5825 0.9813 0.7832 0.7073 0.7261

Table 2. Ablation study between different variants of our proposed methods.

Methods IoU Accuracy Recall Precision F1 Score

Ours-BM 0.5134 0.9749 0.7709 0.6288 0.6603
Ours-NA 0.5548 0.9683 0.8237 0.6476 0.6917

Ours-HL 0.5155 0.9739 0.6377 0.7167 0.6509

Ours 0.5825 0.9813 0.7832 0.7073 0.7261
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fine-tuned R-CNN-based methods in the IoU metric, which shows
the effectiveness of our image translation and adaptive masking
frameworks.

4.5. Ablation Study

In this section, we compare our proposed models with three differ-
ent variants.

Black Masks (BM) is the variant that we transfer the background
style to all black masks. Although zero-value masks are easy for
the NN to learn from, there are lots of black-colored vehicles in
the normal traffic, therefore, black masks is not as an ideal target
domain as the green color. Empirical results show that BM variants
have 7% lower in the IoU metric.

No AEDA (NA) is the variant without adaptive erosion and dilation.
We can see a performance drop in IoU by around 3%. Therefore,
we argue that by applying certain domain knowledge, we can
achieve better vehicle segmentation in the birds-eye-view map.

Half label (HL) variant is to demonstrate the data efficiency and
the robustness of our proposed model against the missing labels.
This setting basically simulates the real-world applications that we
can hardly have all the labels at the scene. At the preprocessing
stage in Fig. 4, we will randomly mask out 50% of the cars at
the scene. The results show that the drop of IoU ia n such setting
is still acceptable (comparable with some of our baselines under
full labels), indicating that our proposed methods can robustly
disentangle the background road and foreground vehicles even
without full supervision signals.

5. Conclusion and Future Works
In conclusion, we propose a weakly-supervised image segmenta-
tion framework via image-to-image translation between two do-
mains, which successfully disentangle foreground contents (vehi-
cles) with multi-modal backgrounds (parking lots, highway, city
roads, etc.). We also optimize our results with an adaptive mask-
ing technique. Empirical results demonstrate that our proposed
method can successfully extract and separate vehicles from diverse
backgrounds.

Thanks to the generative nature of our model, besides the tradi-
tional image segmentation task, we can also generate images with
roads given some images that contain only vehicles with black or
green background. As we see in Fig. 8(b), one by-product of our
generative model is that it can be used to generate realistic multi-
modal images given only vehicle images. Those generated images
can serve as good samples for data augmentation in other down-
stream tasks. Exploring how good are the generated images and
how they can facilitate other learning tasks would be an interesting
future direction for our work.

Still, we are aware there are some limitation in this work. First,
the proposed model is not in a fully end-to-end fashion. In this
work, the reason our model works is that we have strong domain
kowledge about vehicle shape (a rectangle, in a range of 200 to
550 pixels with the given resolution), while in other domains,
such knowledge may be hard to acquire. Therefore, it will be a
good idea to replace the AEDA module with a learnable neural
networks that can embed domain knowledge as constraints during
the segmentation, and the pipeline will then become an end-to-end
model that can adapt to multi-class image segmentation or object
detection.
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