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Abstract
A common objective in Safe Reinforcement
Learning (RL) is to maximize reward while satis-
fying safety constraints. However, previous meth-
ods in safe RL have difficulties in balancing the
reward and the safety objectives. To avoid con-
straint violations, the policies tend to be over-
conservative and converge to local optima with
low rewards. In this work, we propose Self-paced
Safe Reinforcement Learning which combines
a self-paced curriculum on the safety objective
with a base safe RL algorithm PPO-Lagrangian.
During training, the policy starts with easy safety
constraints and gradually increases the difficulty
of the constraints until the desired constraints are
satisfied. We evaluate our algorithm on the Safety
Gym benchmark and demonstrate that the curricu-
lum helps the underlying Safe RL algorithm to
avoid local optima and improves the performance
for both reward and safety objectives.

1. Introduction
Reinforcement Learning has demonstrated a lot of success
in sequential decision making tasks (Mnih et al., 2013; Sil-
ver et al., 2016). In most cases, RL algorithms only have
a single objective of maximizing the reward during train-
ing. However, when safety is a concern in some domains
such as human-robot interaction (Pang et al., 2021; Liu &
Tomizuka, 2018) or autonomous driving (Muhammad et al.,
2020; Hu et al., 2018; Wang et al., 2019), the safety objec-
tive is incorporated into the RL objective as a constraint.
Thus, the policy will be optimized to maximize the reward
while satisfying the constraints.

However, the trade-off between the reward objective and
the safety constraints will create difficulties for training(Ray
et al., 2019). For example, the policy tends to get stuck at an
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over-conservative local optima where the safety constraints
are satisfied with low rewards. For example, in autonomous
driving tasks, the agent is likely not to move at all to avoid
any collision with the obstacles.

In this work, we aim to improve the suboptimal solutions
in safe RL with curriculum learning. Curriculum learn-
ing (Elman, 1993; Bengio et al., 2009) has demonstrated
the abilities of stabilizing the training, increasing sample
efficiency and avoiding local optima. Previous work (Haco-
hen & Weinshall, 2019) has demonstrated that curriculum
learning can effectively modify the optimization landscape
and converge to better final performance. These proper-
ties can help the optimization difficulties in safe RL. In
addition, to avoid manually designing the curriculum, we
consider automatic curriculum (Akkaya et al., 2019) or self-
paced learning (Kumar et al., 2010), where the algorithm
automatically adjusts the curriculum based on its current
performance.

More specifically, we build on top of Lagrangian penalized
versions of PPO and propose to improve its performance by
applying self-paced learning on the safety constraints. The
agent is trained with relaxed constraints first and chooses
more challenging constraints when the current constraints
are easy to satisfy. For example, the agent can first learn to
drive fast and then learn to drive safely to avoid the local
optima of driving safely but slowly. This type of training
procedure can help exploration and converge to a better final
performance in a lot of scenarios. We emphasize that our
objective in this work is to obtain a high performance safe
policy at deployment but not during trainig. For example,
with sim2real transfer, we can learn a policy aggressively in
simulation and deploy a safe policy on the real robot.

In summary, we propose a self-paced policy optimization
algorithm with safety constraints which could improve ex-
ploration and lead to better final performances. We demon-
strate the effectiveness of our algorithm on a toy example on
constraint optimization and evaluate it on the Safety Gym
benchmark (Ray et al., 2019).
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2. Related Work
2.1. Safe RL

Safety is an important consideration in a lot of real-world
applications. The goal of safe RL is to train RL policies
with safety constraints in addition to the reward objective.
Lagrangian method has been widely used in solving Safe RL
problems (Altman, 1998; Geibel & Wysotzki, 2005; Chow
et al., 2017). The Lagrangian method defines a Lagrangian
function which combines reward and cost functions and
automatically adjusts the weights between the two objec-
tives. Constrained Policy Optimization (CPO) (Achiam
et al., 2017) derives the trust region for the update in safe
RL setting and can guarantee monotonic policy improve-
ment while satisfying safety constraints. Other methods
apply Lyapunov constraints to ensure a safe policy up-
date (Perkins & Barto, 2002; Chow et al., 2019; Sikchi
et al., 2021; Berkenkamp et al., 2017; Chow et al., 2018).
However, existing safe RL algorithms still struggle with the
trade-off between reward and safety constraints. In addi-
tion, methods such as CPO also aim to ensure safety during
the exploration process which could be over-conservative.
Our method is built on top of PPO-Lagrangian method and
improves the exploration with self-paced safety constraints.

2.2. Curriculum Learning

Curriculum learning (Elman, 1993) has been shown to be
beneficial in both supervised learning and RL (Bengio et al.,
2009; Zaremba & Sutskever, 2014). In addition, generating
a curriculum automatically can lead to better asymptotic
performance compared to a fixed curriculum. For example,
Kumar et al. (2010) propose the idea of self-paced learning.
In their method, the easiness of each task is defined by
computing the loss of it. The training will focus more on
tasks that could be easily achieved for the current network.
Florensa et al. (2017) and Graves et al. (2017) also propose
the idea of automatically generating the curriculum. Another
recent method, Automatic Domain Randomization (Akkaya
et al., 2019) allows the agent to increase the difficulties of
the tasks automatically based on its current policy.

3. Background
3.1. Markov Decision Process

A Markov decision process (MDP) is described as a tuple
(S,A, r, P, ρ, γ), where S is the state set, A is the action set,
r(s,a) : S ×A −→ R is the reward function. P : S ×A×
S −→ [0, 1] is the state transition probability function, ρ
denotes the initial state distribution, and γ is the discount
factor. Specifically, each episode starts with an initial state
s0 ∼ ρ(s0), the state is input into a parameterized policy
πθ to get the action at ∼ πθ(·|st) The agent takes the

action at and the next state is sampled from the environment
st+1 ∼ p(·|st,at). For a given state-action tuple, the reward
is given as rt = r(st,at). The training objective is to
maximize the expected discounted sum of reward:

max
θ

Jr(πθ) = Eτ∼πθ
[

∞∑
t=0

γtr(st,at)], (1)

where τ = (s0,a0, s1,a1, ...) is the trajectory sampled
given the policy πθ, initial state distribution s0 ∼ ρ(st),
and the state transition function st+1 ∼ p(·|st,at).

3.2. Constrained Markov Decision Process

A constrained Markov decision process (CMDP) is an
augmented version of MDP (Altman, 1999). Specifically,
a constraint function c(st,at) are added to MDP, where
c(st,at) : S × A −→ R. Without loss of generality, we
assume that constraint is defined as c(x) ≤ 0(Any c(x) ≤ d
could be rewritten as c′(x) = c(x)− d ≤ 0.). Similarly, we
could also define the expected discounted cost as:

Jc(πθ) = Eτ∼πθ
[

∞∑
t=0

γtc(st,at)]. (2)

Then the training objective is defined as:

max
πθ∈Πf

Jr(πθ). (3)

where Πf
.
= {πθ ∈ Π : Jc(πθ) ≤ 0} is the feasible set.

3.3. PPO-Lagrangian Method

Lagrangian method (Altman, 1998) is one of widely used
methods for solving constrained optimization problems.
Specifically, in our problem, we define the Lagrangian func-
tion L(θ,λ) as:

L(θ, λ) = −Jr(πθ) + λ · Jc(πθ) (4)

The training objective can be written as:

max
λ≥0

min
θ

L(θ, λ) (5)

PPO-Lagrangian combines the Lagrangian method with
Proximal Policy Optimization (PPO) (Schulman et al.,
2017). PPO defines the training objective as:

Lθk
r (θ) = Eτ∼πθk

[min(
πθ(a|s)
πθk(a|s)

A
πθk
r (s,a),

clip(
πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ)A
πθk
r (s,a))],

(6)

where A
πθk
r (s,a) is the advantage function. PPO-

Lagrangian uses a similar formulation for reward to define
the training objectives Lθk

c (θ) for cost. Then the training
objective of PPO-Lagrangian is defined as:

max
λ≥0

min
θ
−Lθk

r (θ) + λ · Lθk
c (θ) (7)
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Algorithm 1 Self-Paced PPO-Lagrangian Method

Input: number of training epochs Nt, number of policy
training epochs Nπ .
for n = 1 to Nt do

Estimate the expected discounted sum of cost Jc(πθ)
di ←− argmaxdi∈D di ≤ Jc(πθ)
λ←− λ+ β ∗ (Jc(πθ)− di)
for t = 1 to Nπ do
θ ←− θ + α ∗ ∇θ(−Lθk

r (θ) + λ · Lθk
c (θ))

end for
end for

4. Self-Paced Safe Reinforcement Learning
(SPSRL)

4.1. SPSRL Framework

As discussed in Sec 2, directly optimizing Eq. 3 is chal-
lenging because it suffers from local optima and training
instabilities. We propose self-paced policy optimization
with safety constraints, which enables the agent to choose
the suitable training objectives automatically and alleviate
the problems mentioned above.

Ideally, when an agent is presented tasks with with different
difficulties, the agent should gradually learn from the easy
ones to the hard ones. In our case, we define a task in
safe RL with different difficulties by setting different safety
threshold di: D = {d1, d2, ..., dk}. We rank the thresholds
with d1 as the lowest one and dk as the highest one. During
deployment, we may only care about one of the threshold
defined in D, which is usually the smallest one d1 = 0. The
other thresholds are defined to help the training procedure.

During training, we start from the highest threshold dk. As
long as the safety threshold is satisfied: Jc(πθ) < dk, we
decrease the threshold to dk−1. We iterate such procedure
until the minimal threshold d0 is satisfied. Formally, we
solve the following equations iteratively:

min
θ
−Jr(πθ) s.t. Jc(πθ) ≤ di, (8)

where
di = argmax

di∈D
di ≤ Jc(πθ). (9)

4.2. Self-Paced PPO-Lagrangian method

In this work, we combine the proposed self-paced curricu-
lum with PPO-Lagrangian. However, a similar idea could
potentially be applied to other constrained optimization al-
gorithms, and we leave that exploration to future work. To
solve the max-min optimization in PPO-Lagrangian, we
have two iterations for parameter update: one updates policy
parameters θ with higher frequency and the other updates
λ with much lower frequency. Note that different threshold
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Figure 1. Fig. 1a visualizes f(x) and c(x). Fig. 1b visualizes the
trajectory of x during optimization. Fig. 1c and Fig. 1d visualizes
the trajectory of f(x) and c(x). The Lagrangian method converges
to a local optima which satisfies the constraint but does not achieve
the best possible performance. The self-paced Lagrangian method
would relax the constraint first and finally converge to a global
optima which is both feasible and optimal.

will only affect the maximization over λ but will not affect
the minimization over θ. This is because adding a constant
value will not affect the gradient update of θ. Thus, at each
iteration, λ is updated according to:

λt+1 = λt + β ∗ (Jc(πθ)− di), (10)

where di is defined as Eq. 9, and β is the update rate for λ.
The algorithm is summarized in Alg. 1.

5. Experiments
In this section, we first study a toy example to demon-
strate the benefits of using self-paced learning on constraints.
Then we evaluate the combination of self-paced constraints
with PPO-Lagrangian on the Safety Gym Benchmark (Ray
et al., 2019). More results can be found in Appendix A.

5.1. Toy Example

We first apply self-paced learning with safety constraints on
a toy example to give an intuition why self-paced learning
would help constrained optimization. In this experiment, we
formulate our problem as the following objective:

min
x

f(x), s.t. c(x) ≤ 0. (11)

Ideally, the proposed self-paced learning over the constraints
is supposed to be effective when the feasible set is composed
of multiple disconnected subsets. In this case the algorithm
may be trapped into a certain constraint set and cannot
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Figure 2. PPO-Lagrangian (orange curve) and SP-PPO-Lagrangian (blue curve) are evaluated in the Safety Gym environment. We choose
the point agent and different levels of goal, button, and push tasks. In most of the tasks, our method can converge to a policy with better
final returns while has a similar performance as PPO-Lagrangian in terms of satisfying the safety constraints.

find the global optima. Thus, we define the optimization
objective function f(x) = 1

50 (x − π)2 and the constraint
function c(x) = −5 cos (x). Mathematically, the global
optima should be x = π

2 or x = 3π
2 .

We first apply Lagrangian method to solve Eq. 11. Then we
combine SPCPO with Lagrangian method (denoted as SP
Lagrangian method). The threshold set D is defined as:

D = {di = 2N−i|i = 0, 1, 2, ...M}, (12)

where N defines the initial threshold, while M defines the
number of threshold we use in the set. Adam (Kingma
& Ba, 2014) is used in both algorithms for both λ and x
optimization.

The results are shown in Fig. 1. The Lagrangian method
is over-conservative, and stuck in a point where it is safe
but the doesn’t reach the lowest function value of f(x). In
constrast, the self-paced method finds the optima without
the constraint first, and then gradually adjusts the parameters
to satisfy the constraint.

5.2. Safety Gym Experiment

We evaluate our algorithm on the safety RL benchmark
Safety Gym (Ray et al., 2019). The constraints for safety
gym environment is defined as a limited tolerance of inter-
acting with hazards and obstacles. Defining different cost
threshold amounts to defining different budget for unsafe
actions. We compare PPO-Lagrangian and the proposed
self-paced PPO-Lagrangian method in this experiment. We
use 5 seeds for training for each task.

The experiment results are shown in Fig. 2. SP PPO-
Lagrangian has better performances in terms of the final
return with similar final cost as PPO-Lagrangian. At the
beginning of training, the return for SP PPO-Lagrangian
increases much faster than PPO-Lagrangian and the cost
reduces more slowly. This indicates that the policy is doing
exploration more aggressively with the self-paced learning.
In Point Push2, SP PPO-Lagrangian does not have a signifi-
cant improvement over PPO-Lagrangian. We hypothesize
that it is more challenging than other environments to get
high returns even without considering the cost constraints.

6. Conclusion
In this work, we propose Self-Paced Safe Reinforcement
Learning (SPSRL). We predefine a set of safety threshold
indicating different difficulties. The agent is allowed to
choose a suitable threshold for training based on its current
performance. In this way the agent learns to optimize for the
reward aggressively first and gradually finetunes to satisfy
the safety constraints. We demonstrate the benefits of our al-
gorithm in a toy example and the Safety Gym environments.

In the future, we aim to evaluate our method in more diverse
settings and combine it with other safe RL algorithms be-
sides PPO-Lagrangian. We are also interested in extending
this work by experimenting with other ways of incorporat-
ing curriculum to study the role of curriculum in safe RL
more systematically.
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Figure 3. PPO-Lagrangian (orange curve) and SP-PPO-Lagrangian (blue curve) are evaluated in the Safety Gym environment. We choose
the point agent and different levels of goal, button, and push tasks. In most of the tasks, our method can converge to a policy with better
final returns while has a similar performance as PPO-Lagrangian in terms of satisfying the safety constraints.

A. Additional Experiment Results on Safety Gym
Additional experiment results for safety gym is shown in Fig. 3.

B. Safe Driving Experiment
Safety is one of the critical issues in the autonomous driving domain. We would like to test our constrained optimization
algorithm in autonomous driving. We design the Safe Driving environment, which consists of a circle environment and a
trajectory environment.

B.1. Experiment Setup

For both environment, we assume a bicycle model as the kinematic model and brush tire model as the dynamics model (Snider
et al., 2009; Rajamani, 2011). We take drifting behaviors into account, which would make the task more challenging. The
visualization of the two environments is shown in:

For the Circle environment, the vehicle is required to drive along the circle. We assume a fixed width of the trajectory and
going off the trajectory is considered as dangerous behaviors. The observation space is defined as the lateral distance to
the center of the trajectory, the orientation difference with respect to the tangent of the trajectory, and their corresponding
derivatives with respect to time.

For the Trajectory environment, the vehicle is required to drive along the randomly generated trajectory. We assume a fixed
width of the trajectory and going off the trajectory is considered as dangerous behaviors. In addition to the observation
space in the circle environment, the partial trajectory around the vehicle is also added into the observation space.

B.2. Experiment Results

The results of Circle environment is shown in Fig. 5. We could tell that SP PPO-Lagrangian has a slightly better return than
PPO-Lagrangian. Additionally, the training of SP PPO-Lagrangian is more stable than PPO-Lagrangian. However, if the
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(a) Circle Environment (b) Trajectory Environment

Figure 4. Visualization of the Circle environment and the Trajectory environment. In the Circle environment, the vehicle is required to
follow the circle. In the Trajectory environment, the trajectory is randomly generated. The vehicle is required to follow the trajectory. In
both environments, we assume a fixed width of the trajectory. Going off the trajectory is considered as dangerous behaviors. We specify
different desired velocities in both environments, which defines different levels of difficulties.

desired velocity is too high (e.g. v = 6m/s), SP PPO-Lagrangian may not converge to a safe policy within limited training
steps. This is probably because it has converged to an aggressive policy, it would takes a long time to converge to a safe one.
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Figure 5. PPO-Lagrangian (orange curve) and SP PPO-Lagrangian (blue curve) are evaluated in the Circle environment. We choose
different desired velocities denoting different levels of difficulties. The greater the desired velocity is, the larger the gap between two
methods in terms of return. But when desired velocity is too high (e.g. 5 m/s), SP PPO-Lagrangian cannot converge to a safe policy.

The results for the Trajectory environment is shown in Fig. 6. The conclusion here is similar to that in the Circle environment.
We could see a greater gap between two methods in terms of return. The larger the velocity is, the larger the gap is.

The cost for SP PPO-Lagrangian cannot converge to zero if the desired velocity is too high. This is probably because
the policy has already learned to be aggressive, it would take a longer time for it to be safe again because it may need to
substantially change the strategy.
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(a) Trajectory Env (v=2) Return
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(b) Trajectory Env (v=3) Return
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(c) Trajectory Env (v=4) Return
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(d) Trajectory Env (v=5) Return
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(g) Trajectory Env (v=4) Cost
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Figure 6. PPO-Lagrangian (orange curve) and SP PPO-Lagrangian (blue curve) are evaluated in the Trajectory environment. The vehicle
is required to follow a certain randomly generated trajectory. We choose different desired velocities denoting different levels of difficulties.
The greater the desired velocity is, the larger the gap between the two methods in terms of return. But when desired velocity is too high
(e.g. 5 m/s), SP PPO-Lagrangian cannot converge to a safe policy.


