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Abstract
Deep motion forecasting models have achieved
great success when trained on a massive amount
of data. Yet, they often perform poorly when
training data is limited. To address this chal-
lenge, we propose a transfer learning approach for
efficiently adapting pre-trained forecasting mod-
els to new domains, such as unseen agent types
and scene contexts. Unlike the conventional fine-
tuning approach that updates the whole encoder,
our main idea is to reduce the amount of tun-
able parameters that can precisely account for
the target domain-specific motion style. To this
end, we introduce two components that exploit
our prior knowledge of motion style shifts: (i) a
low-rank motion style adapter that projects and
adjusts the style features at a low-dimensional
bottleneck; (ii) a modular adapter strategy that
disentangles the features of scene context and
motion history to facilitate a fine-grained choice
of adaptation layers. Our method outperforms
existing fine-tuning methods on three real-world
datasets, namely, Stanford Drone, Lyft Level 5
and Intersection Drone in low-shot transfer.

1. Introduction
Motion forecasting is an essential pillar for the success-
ful deployment of autonomous systems in environments
comprising various heterogeneous agents. It presents the
challenges of modeling (i) physical laws (e.g., goal-directed
behaviors, avoiding collisions) that govern general motion
dynamics of all agents; and (ii) social norms (e.g., the min-
imum separation distance, preferred speed) that influence
the navigation styles of different agents across different lo-
cations. Owing to the success of deep neural networks on
large-scale datasets, learning prediction models in a data-
driven manner has become a de-facto approach for motion
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forecasting and has shown impressive results (Alahi et al.,
2016; Mangalam et al., 2021; Salzmann et al., 2020).

However, existing deep motion forecasting models suffer
from inferior performance when they encounter novel sce-
narios (Wang et al., 2022b; Xu et al., 2022). For instance, a
network trained with large-scale data for pedestrian forecast-
ing struggles to directly generalize to cyclists. Some recent
methods propose to incorporate strong priors robust to the
underlying distribution shifts (Liang et al., 2020; Liu et al.,
2021; Bhattacharyya et al., 2022). Yet, these priors often
make strong assumptions on the distribution shifts, which
may not hold in practice. This shortcoming motivates the
following transfer learning paradigm: Adapting a forecast-
ing model pretrained on one domain with sufficient data to
new domains such as unseen agent types and scene contexts
as efficiently as possible.

One common transfer learning approach is fine-tuning a pre-
trained model on data collected from target domain. How-
ever, directly updating the model is often sample inefficient,
as it fails to exploit the inherent structure of the distribu-
tional shifts in motion context. In the forecasting setup, the
physical laws behind motion dynamics are generally invari-
ant across geographical locations and agent types: all agents
move towards their goal and avoid collisions. As a result,
the distribution shift can be largely attributed to the changes
in the motion style, defined as the way an agent interacts
with its surroundings. Given this decoupling of motion dy-
namics, it can be efficient for an adaptation algorithm to
only account for updates in the target motion style.

In this work, we efficiently adapt a deep forecasting model
from one motion style to another. We refer to this task as
motion style transfer. We retain the domain-invariant dy-
namics by freezing the pre-trained network weights. To
learn the underlying shifts in style during adaptation, we
introduce motion style adapters (MoSA), which are new
modules inserted in parallel to the encoder layers. The style
shift learned by MoSA is injected into the frozen pre-trained
model. We hypothesize that the style shifts across forecast-
ing domains often reside in a low-dimensional space. To for-
mulate this intuition, we design MoSA as a low-dimensional
bottleneck, inspired by recent works in language (Hu et al.,
2021; Mahabadi et al., 2021). Specifically, MoSA com-
prises two trainable matrices with a low rank. The first
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Figure 1. We present an efficient transfer learning technique that adapts a forecasting model trained with sufficient labeled data (e.g.,
pedestrians), to novel domains exhibiting different motion styles (e.g., cyclists). We freeze the pretrained model and only tune a few
additional parameters that aim to learn the underlying style shifts (left). We hypothesize that the style updates across domains lie in a
low-dimensional space. Therefore, we propose motion style adapters with a low-rank decomposition (r ≪ d), designed to infer and
update the few style factors that vary in the target domain (right).

matrix is responsible for extracting the style factors to be
updated, while the second enforces the updates. Our method
introduces and updates less than 2% of total parameters.

In low-resource settings, it can be difficult for MoSA to
distinguish the relevant encoder layers updates from the
irrelevant ones, resulting in sub-optimal performance. To fa-
cilitate an informed choice of adaptation layers, we propose
a modularized adaptation strategy. Specifically, we consider
forecasting architectures that disentangle the fine-grained
scene context and past agent motion using two independent
low-level encoders. This design allows flexible injection of
MoSA to one encoder while leaving the other unchanged.
Given the style transfer setup, our modular adaptation strat-
egy yields substantial performance gains in low-data regime.

We empirically demonstrate the efficiency of MoSA on the
state-of-the-art model Y-Net (Mangalam et al., 2021) on the
heterogenous SDD (Robicquet et al., 2016). To showcase
the generalizability of MoSA in self-driving applications,
we adapt a large-scale model trained on one part of the city
to an unseen part, on the Level 5 Dataset (Houston et al.,
2020). Through extensive experimentation, we quantita-
tively and qualitatively show that given just 10-30 samples
in the new domain, MoSA improves the generalization error
by 25% on SDD. Moreover, our design outperforms stan-
dard fine-tuning techniques by 20% on the Level 5 dataset.

2. Related Work
Distribution shifts. The primary challenge in adapting to
new domains lies in tackling the underlying distributional
shifts. One ambitious approach is developing domain gener-
alization techniques that aim to learn models that directly
function well in unseen test domains (Gulrajani & Lopez-
Paz, 2021; Blanchard et al., 2011). Negative data augmen-

tation techniques have been applied in a limited scope to
reduce collisions (Liu et al., 2021) and off-road predictions
(Zhu et al., 2021) on new domains. Domain adaptation is
another line of work that allows a learning algorithm to ob-
serve a set of unlabelled test samples. While this approach
has been shown effective in a variety of supervised tasks
in vision (Csurka, 2020; Wang & Deng, 2018; Zhao et al.,
2020), it is not the ideal setup for motion forecasting setup
because labels in the form of future trajectories are fairly
easy to acquire. Therefore, in this work, we take an alternate
approach of transfer learning using limited data.

Transfer learning. The standard approach of fine-tuning the
entire or part of the network (Howard & Ruder, 2018; Rad-
ford & Narasimhan, 2018) has been shown to outperform
feature-based transfer strategy (Cer et al., 2018; Mikolov
et al., 2013). Recently, there has been a growing interest in
developing parameter-efficient fine-tuning (PET) methods
in both language and vision, as they not only yield a com-
pact model (Houlsby et al., 2019; Hu et al., 2021; Mahabadi
et al., 2021), but also show promising results in outperform-
ing fine-tuning in low-resource settings (Mahabadi et al.,
2021; Liu et al., 2022a). Similar in spirit to PET methods,
we introduce additional parameters in our network but with
an objective of style-conditioned motion generation.

3. Method
3.1. Motion Style Transfer

Motion style. Modelling agent motion behavior involves
learning the social norms (e.g., minimum separation dis-
tance to others, preferred speed, valid areas of traversal) that
dictate the motion of the agent in its surroundings. These
norms differ across agents as well as locations. For in-
stance, the preferred speed of pedestrians differs from that
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Figure 2. Our modular style transfer strategy updates only a subset of the encoder to account for the underlying style shifts. For instance,
we adapt the scene encoder only to model scene style shifts (top right). On the other hand, for the underlying agent motion shift, we only
update the agent motion encoder (bottom right). This strategy boosts performance in low-resource settings.

of cyclists; the separation distance between pedestrians in
parks differs from that in train stations. To describe these
agent-specific (or scene-specific) elements that govern un-
derlying motion behavior, we define the notion of “motion
style”. Motion style is the collective umbrella that models
the social norms of an agent given its surroundings.

Problem statement. We are provided a forecasting model
trained on large quantities of data comprising a particular
set of style(s). Our goal is to adapt the model to the idiosyn-
crasies of a target style as efficiently as possible. We denote
the model input and ground-truth future trajectory of an
agent i using xi and yi respectively. The input xi comprises
the past trajectory of the agent, surrounding neighbors, and
the surrounding context map. We assume that the data cor-
responding to an agent type is generated by an underlying
distribution PX,Y (·; s) parameterized by s, the style of the
agent. As mentioned earlier, the style is dictated by both the
agent type and its surroundings.

Training. The forecasting model has an encoder-decoder
architecture (see Fig. 1) with weights Wenc and Wdec re-
spectively. The training dataset, DS of size N is given by
∪s∈SDs = (xi, yi)i∈{1,...,N}, where S is a collection of
motion styles observed within the dataset. The model is
trained to minimize:

Ltrain(DS ;Wenc,Wdec) =
1
N

N∑
i=1

L(xi, yi;Wenc,Wdec). (1)

Adaptation. When a novel scenario with style s′ (s′ /∈
S) is encountered, it leads to a distribution shift and the
learned model often struggles to directly generalize to the
new dataset Ds′ = (x′

i, y
′
i)i∈{1,...,Ntarget} of size Ntarget.

In this work, we aim to develop an adaptation strategy for
efficient motion style transfer, i.e., cases where Ntarget is
small (Ntarget ≪ N ). Often, motion behaviors do not
change drastically across domains. We therefore propose
to freeze weights of the pretrained forecasting model and

introduce motion style adapters, termed MoSA, to capture
the target motion style. As shown in Fig. 1, we adapt a
pre-trained forecasting model by fine-tuning WMoSA with
the following objective:

Ladapt(Ds′ ;WMoSA) =
1

Ntarget

∑Ntarget

i=1 L(x′
i, y

′
i;WMoSA). (2)

3.2. Motion Style Adapters

Our main intuition is that the style shifts across forecasting
domains are usually localized – only a few variables of the
underlying motion generation process change. Therefore,
during style transfer, we only need to adapt the distribution
of this small portion of latent factors, while keeping the rest
of the factors constant. These updates would correspond to
the changes in motion style (s → s′) in the target domain, as
the general principles of motion dynamics remain the same
across domains. We design motion style adapters, referred
to as MoSA, to carry out these updates.

Our proposed MoSA design comprises a small number of
extra parameters added to the model during adaptation (see
Fig. 1). Each module comprises two trainable weight ma-
trices of low rank, denoted by A and B. The first matrix
A is responsible for inferring the target style factors, while
the second matrix B performs the desired update. The low
rank r realizes our intuition by restricting the number of
style factors that gets updated (r ≪ d, where d is the dimen-
sion size of an encoder layer). Therefore, during adaptation,
the weight updates of the encoder are constrained with our
low-rank decomposition WMoSA = BA.

For brevity, let us consider the adaptation of encoder layer
l with input hl and output hl+1. As shown in Fig. 1, W l

enc

and W l
MoSA are multiplied with the same input hl, and their

respective output vectors are summed coordinate-wise:

(Train) h
l+1

= W
l
ench

l
, (3)

(Adapt) h
l+1

= W
l
ench

l
+ W

l
MoSAh

l
= W

l
ench

l
+ B

l
A

l
h
l
. (4)
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Figure 3. Difference in goal decoder output of Y-Net on the adaptation of pedestrian-
trained model using our proposed style-injection modules (Red is positive, blue is nega-
tive). During adaptation, Y-Net learns to focus on the road lanes for cyclist forecasting.
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Figure 4. Evaluation of adaptation tech-
niques for long-term motion prediction (25
secs) on Level 5. Error in meters for 5 seeds.

Following common practices (Houlsby et al., 2019; Hu et al.,
2021), matrices A and B are initialized with a near-identity
function (Hu et al., 2021), so that the original network is
unaffected when training starts. Such an initialization also
provides flexibility to ignore certain layers during style up-
dates. Despite this flexibility, the total number of extra
parameters is significant and can be inconducive to efficient
style transfer. Therefore, to further boost sample efficiency,
we present a modular adaptation strategy in the next.

3.3. Modular Adaptation Strategy

Motion style can be decoupled into scene-specific style and
agent-specific style. Scene-specific style dictates changes in
motion due to physical scene structures. The agent-specific
style captures the underlying navigation preferences of dif-
ferent agents, e.g., distance to others and preferred speed.

Consider the modularized encoder design shown in Fig. 2.
The encoder models the input scene and agent’s past his-
tory independently. The fusion encoder then fuses the two
representations together. This design has the advantage to
decouple the task of the style adapters into scene-specific
updates and agent-specific updates. Given the modularized
setup, the nature of the underlying distribution shifts can
guide which modules within the model need to be updated
to the target style. Given the style transfer setup, decoupling
style adapters can improve the adaptation performance while
significantly reducing the number of updated parameters.

4. Experiments
4.1. Motion Style Transfer across Agents on SDD

We perform short-term prediction, in which the future trajec-
tory is predicted for the next 4.8 seconds, given 3.2 seconds
of observation. We use the publicly available Y-Net model
trained on pedestrian data across all scenes and adapt it to
cyclists in deathCircle 0 as there exists a clear distinction
between the motion style of pedestrians and cyclists (see
Fig. 7). Adaptation uses Ntarget = {10, 20, 30} samples.

Table 1. Evaluation of adaptation methods for motion style trans-
fer (pedestrians to bikers) on SDD using few samples Ntarget =
{10, 20, 30}. Error reported is Top-20 FDE in pixels. The gen-
eralization error is 58 pixels. Our proposed MoSA outperforms
competitive baselines and improve upon generalization error by
> 25%. Mean and standard deviation were calculated over 5 runs.

Ntarget 10 20 30

FT 57.28 ± 1.21 52.61 ± 0.87 46.31 ± 1.79
ET (Liu et al., 2022b) 51.88 ± 1.32 46.78 ± 1.78 43.13 ± 1.03
PA (Rebuffi et al., 2018) 52.77 ± 0.85 47.75 ± 1.83 44.70 ± 1.28
MoSA (ours) 49.98 ± 1.05 45.55 ± 0.77 41.69 ± 0.88

Tab. 1 quantifies the performance of various style transfer
techniques. The model trained on pedestrians does not gen-
eralize to cyclists as evidenced by the high generalization
FDE. Our MoSA design reduces this error by ∼ 30% using
only 30 samples. Moreover, MoSA outperforms the base-
lines while updating only 0.5% additional parameters. We
also qualitatively analyze the Y-Net goal decoder outputs
after model adaptation using MoSA in Fig. 3. One can see
that adapted Y-Net successfully learns the style differences
between behaviors of pedestrians and bikers.

4.2. Motion Style Transfer across Scenes on L5

We apply MoSA to L5 dataset, where we divide the dataset
into two splits based on data collection locations and thereby,
construct a scene-style shift scenario (see Fig. 8). We train a
Vision Transformer Tiny (ViT-Tiny) model on the majority
route and adapt it to a smaller unseen route. To simulate
low-resource settings, we provide the frames, sampled at
different rates, that cover the unseen route only once. Fig. 4
quantitatively evaluates the performance of various adapta-
tion strategies. MoSA performs superior in comparison to
different baselines while adding and updating only 5% of
the full model parameters.

For modularization strategy experiments and implemen-
tation details: Please refer to appendices.
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Appendices
The appendices are organized as follows: First, we describe
additional related works. Next, we describe the datasets,
pretrained models, the adaptation baselines, and metrics
used in our work. Next, we describe the additional exper-
iments to demonstrate the effectiveness of our proposed
methods. Finally, we describe the implementation details
of all experiments involved. Our codes are available at
https://github.com/vita-epfl/motion-style-transfer.

A. Additional Related Work
Motion forecasting. Classical models described the inter-
actions between various agents based on domain knowledge
but often failed to model complex social interactions in
crowds (Helbing & Molnár, 1995; Coscia et al., 2018; An-
tonini & Bierlaire, 2006). Following the success of Social
LSTM (Alahi et al., 2016), various data-driven forecasting
models have been proposed to capture social interactions
directly from observed data (Kothari et al., 2021; Vemula
et al., 2018; Gupta et al., 2018; Salzmann et al., 2020). One
common shortcoming of current methods is their reliance
on a large and diverse set of training data, which may not
be readily available for novel agents and locations. In this
work, we adapt a pretrained forecasting model to unseen
target domains (novel agent types and scenes) as efficiently
as possible.

Style transfer. The popular work of Robicquet et al. (2016)
defined navigation style as the way different agents interact
with their surroundings. It introduced social sensitivity as
two handcrafted descriptions of agent style and provided
them as input to the social force model (Helbing & Molnár,
1995). In this work, we model style as a latent variable that
is learned in a data-driven manner. (Wang et al., 2022a)
performed online adaptation across different scenarios for
vehicle prediction domains. Closely related to ours, Liu
et al. (2022b) decoupled domain-invariant laws and domain-
specific style inside their causal forecasting framework.
However, their method imposes the strong constraint of
requiring access to multiple environments of varying style
during training. Furthermore, we decouple motion style
into scene-style components and agent-style components to
favour efficient adaptation.

B. Datasets
We use a total of three datasets to study the performance
of motion style adapters: Stanford Drone Dataset (SDD)
(Robicquet et al., 2016), the Intersection Drone Dataset
(InD) (Bock et al., 2020), and Level 5 Dataset (L5) (Houston
et al., 2020). We consider both short-term and long-term
motion forecasting setups.

B.1. Stanford Drone Dataset (SDD)

SDD comprises 20 top-down scenes on the Stanford campus
with various agent types (i.e., pedestrians, bicyclists, car,
skateboarders, buses, golf carts). We perform short-term
prediction where we give 3.2 seconds trajectories and output
the future 4.8 seconds. Following the same pre-processing
procedure in Mangalam et al. (2021), we filter out short
trajectories below 8 seconds in duration, split temporally
discontinued trajectories, and then use a sliding window
approach without overlap to split the cleaned trajectories.
After those steps, the dataset contains 14860 pedestrian
trajectories and 5152 bicyclist trajectories. The semantic
segmentation has 6 classes, namely pavement, terrain, struc-
ture, tree, road, and others (Caesar et al., 2018).

B.2. Intersection Drone Dataset (inD)

The inD Dataset comprises four distinct road intersections,
namely scene1, scene2, scene3, and scene4, with various
agent types, i.e., cars, pedestrians, bicyclists, trucks and
buses. We perform both short-term and long-term predic-
tions. The short-term prediction outputs 4.8 seconds trajec-
tories given 3.2 seconds observation, while the long-term
prediction generates 30 seconds future trajectories given 5
seconds of observed ones. We use similar pre-processing
steps as for SDD. Additionally, we convert the data from
the real-world coordinates to pixel coordinates using the
provided scaling factors (Bock et al., 2020). After the pre-
processing steps, inD contains 1396 long-term pedestrian
trajectories, 1508 short-term car trajectories, and 157 short-
term trucks trajectories.

B.3. Lyft Level 5 Dataset (L5)

Lyft Level 5 Prediction is a self-driving dataset, containing
over 1,000 hours of real-world vehicle data, where each
scene lasts 25 seconds. We perform long-term motion fore-
casting where the ego vehicle moves in a closed loop for the
entirety of the scene for 25 seconds, while the surrounding
agents follow log-replay (Houston et al., 2020). In the real-
world, ego vehicles can come across novel scene contexts,
for example, road constructions.

In summary, SDD and inD with different heterogeneous
agents provide the ideal setup to validate motion style trans-
fer techniques. L5 dataset provides long sequences of ego
vehicle to study the effects of style transfer on long-term
self-driving settings.

C. Pre-trained Model Details
We utilize the state-of-the-art model Y-Net (Mangalam et al.,
2021) for experiments on SDD and inD. We further pro-
pose an alternate design of Y-Net termed Y-Net-Mod to
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Scene module

Agent motion module

Fusion module

Figure 5. Y-Net-Mod encoder architecture.

Table 2. Generalization performance of Y-Net and Y-Net-Mod on
two modularization setups. Errors reported are Top-20 ADE/FDE
in pixels. Y-Net-Mod performs at par with the original Y-Net.

Experiment Y-Net Y-Net-Mod

Scene transfer on inD 6.44 / 10.72 6.60 / 11.17
Agent motion transfer on inD 24.48 / 33.54 24.56 / 29.07

demonstrate the efficacy of our modular adaptation strategy.
Finally, we utilize the ViT-Tiny (Dosovitskiy et al., 2021)
architecture for experiments on L5.

C.1. Y-Net

Y-net (Mangalam et al., 2021) comprises three sub-networks:
the scene heatmap encoder, the waypoint heatmap decoder,
and the trajectory heatmap decoder. Specifically, the en-
coder is designed as a U-net encoder which consists of one
center convolutional layer, four intermediate blocks where
each uses max pooling and two convolutional layers, and
one final max pooling layer. It takes as input the concatena-
tion of the scene semantic map and past trajectory heatmap.

C.2. Y-Net-Mod

We construct Y-Net-Mod on top of the original Y-Net archi-
tecture. The modification treats the scene context and agent
motion independently before fusing their representations
together. As shown in Fig. 5, the first three layers of the
original encoder are decoupled into scene context and past
agent motion modules in order to learn their representations
independently. Subsequently, the representations are fused
together using the fusion encoder, that is similar in design
to the last two layers of Y-Net. The original number of
channels in each encoder layer of Y-Net are evenly divided
between each module in Y-Net-Mod encoder so that the
latter is compatible with the Y-Net decoders.
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Figure 6. Illustration of different adapter designs applied to the
Y-Net encoder layers.

Benchmarking Y-Net and Y-Net-Mod: To illustrate that
our modification to Y-Net does not result in severe drop in
performance, we benchmark the performance of Y-Net and
Y-Net-Mod on inD for the modularization setups presented
in main draft: 1) scene transfer of pedestrians, 2) agent
motion transfer from cars to trucks. Table. 2 illustrates
that modularization of the Y-Net encoder does not lead to a
significant drop in the performance.

C.3. Vision Transformer

We utilize the official ViT-Tiny architecture (Dosovitskiy
et al., 2021) for the Level 5 dataset. We only modify the
last layer to output the forecasting predictions in the form
of x, y coordinates for Tpred time-steps.

D. Adaptation Techniques
We compare the following methods during adaptation for
the experiments reported in the paper:

Full Model Finetuning (FT) (Howard & Ruder, 2018): We
update the weights of the entire model . The learning rate
(LR) is 5e-5, unless mentioned otherwise.

Partial Model Finetuning (ET) (Liu et al., 2022b): We
update the weights of the Y-Net encoder for SDD and inD ,
and the last two layers of ViT for Level 5. The LR is 5e-4,
unless mentioned otherwise.

Parallel Adapters (PA) (Rebuffi et al., 2018): We insert a
convolutional layer with filter size of 3 in parallel to each
encoder layer and update the weights of these layers. The
LR is 5e-5, unless mentioned otherwise. See Fig. 6a.

Adaptive Layer Normalization (BN) (Li et al., 2017;
de Vries et al., 2017): We update the weights and biases of
the layer normalization, wherever present. The LR is 1e-4,
unless mentioned otherwise.
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Motion Style Adapters (MoSA) [Ours]: We insert our mo-
tion style adapters in parallel to each encoder layer in SDD
and inD, and in parallel to query and value matrices of multi-
headed attention in L5. During modularized adaptation, we
add our modules across the specified encoders only rather
than the entire encoder. The LR is 3e-3 and the rank r is 1,
unless mentioned otherwise. See Fig. 6b.

D.1. Initialization of Motion Style Adapters

Matrices A and B are initialized such that the original net-
work is not affected when training starts. Specifically, we
use a random Gaussian initialization for A and zero for B.
This initialization scheme allows these modules to be ig-
nored at certain layers if there is no need for a change in
activation distribution.

D.2. Metrics

We use the established Average Displacement Error (ADE)
and Final Displacement Error (FDE) metrics for measuring
the performance of model predictions. ADE is calculated
as the l2 error between the predicted future and the ground
truth averaged over the entire trajectory while FDE is the
l2 error between the predicted future and ground truth for
the final predicted point (Alahi et al., 2016). For multiple
predictions, the final error is reported as the min error over
all predictions (Gupta et al., 2018). Additionally, we de-
fine the generalization error as the error of the pretrained
model on the target domain. The more the dissimilarity
between the source domain and target domain, the higher
the generalization error.

E. Additional Experiments for Motion Style
Adapters

Besides the two motion style transfer experiments presented
in the paper, we have an additional experiment on inD to
demonstrate the efficacy of our motion style adapters.

E.1. Motion Style Transfer across Scenes on inD

In this setup, we perform long-term prediction, in which
future trajectory in the next 30 seconds is predicted, given 5
seconds of observation. We use the publicly available Y-Net
model and follow the experimental protocol of (Mangalam
et al., 2021) in which the model is trained on pedestrians in
{scene2, scene3, scene4} and tested on pedestrians from
the unseen scene scene1. Ntarget = {10, 20, 30} samples
are used during adaptation.

Despite the long-term prediction setup, the generalization
error, in this case, is 33 pixels that are lower compared to the
previous SDD setup, as the target domain is more similar
to the source domain. Tab. 3 quantifies the performance of

Table 3. Evaluation of adaptation methods for scene style transfer
on InD using few samples Ntarget = {10, 20, 30}. Error reported
is Top-20 FDE in pixels. The generalization error on inD is 33
pixels. Our proposed MoSA outperforms competitive baselines
and improve upon the generalization error by > 25%. Mean and
standard deviation were calculated over 5 runs.

Ntarget 10 20 30

FT 27.92 ± 1.99 25.15 ± 1.08 23.18 ± 0.64
ET (Liu et al., 2022b) 28.06 ± 0.68 23.19 ± 1.39 21.13 ± 1.00
PA (Rebuffi et al., 2018) 28.71 ± 1.50 26.10 ± 0.74 25.00 ± 1.08
MoSA (ours) 25.18 ± 0.72 21.70 ± 0.84 20.35 ± 1.18

Figure 7. Distribution of trajectories of pedestrians (blue) and bik-
ers (red) on deathCircle.

scene style transfer across all methods. Once again, using
just 30 samples, MoSA improves the generalization error
by ∼ 40% and outperforms its counterparts.

E.2. Additional visualization for SDD and L5

Fig. 7 presents the trajectory distribution of pedestrians and
cyclists on SDD, where we can see clear distinction. Fig. 8
shows the way we split L5 dataset to construct a scene-
transfer scenario.

F. Additional Experiments for Modular
Structure

Now, we empirically demonstrate the effectiveness of ap-
plying our motion style adapters on top of a modularized
architecture on three setups: motion style transfer across
agents and across scenes on inD and motion style transfer
across agent motion on SDD.
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Figure 8. Training-Adaptation split for Level 5 prediction dataset.
Model trained on the green route and adapted on the blue route.
The distribution shift arises from differing styles in different scene
locations. The inherent motion style parameters of the agent re-
main same (ego vehicle in both cases). Background taken from
(Houston et al., 2020).

We modularize the Y-Net architecture as shown in Fig. 5,
where we treat scene and agent motion independently for
the first two layers of the encoder before fusing the learned
representations. Given Y-Net-Mod, we consider five cases
given the module list on which MoSA is applied: (1) scene
only [S], (2) agent motion encoder only [A], (3) scene and
fusion encoder [S+F], (4) agent motion and fusion encoder
[A+F], and (5) scene, agent motion and fusion encoders
together [S+A+F].

F.1. Motion Style Transfer across Agents on inD

In scene1 of inD, cars and trucks share the same scene
context (see Fig. 9) differing only in their velocity distri-
bution (see Fig. 10). Fig. 11 represents the performance
of style transfer from cars to trucks on 20 samples under
five different adaptation cases. It is interesting to note that
adapting the agent motion encoder alone [A] performs the
best while including the scene encoder for adaptation dete-
riorates performance ([S] worse than [A], [S+A+F] worse
than [A+F]).

Fig. 13 also qualitatively shows the output difference before
and after using various modularized adaptation strategies.
We can see that adapting the agent motion encoder alone
indeed captures the speed changes from cars to trucks, and
updating this single module is already sufficient to infer
such change.

F.2. Motion Style Transfer across Scenes on inD

We train the Y-Net-Mod model on pedestrian data on scene
ids = {2, 3, 4} and adapt it on scene1 of inD. Fig. 12 repre-
sents the performance of scene style transfer on 20 samples
in the five cases. Contrary to the previous setup, adapting the
scene encoder [S] is clearly more important than the agent
motion encoder [A]. Further, adapting the agent encoder
deteriorates performance ([S+A+F] worse than [S+F]). It is
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Figure 9. Car and truck trajectory distribution in inD dataset
scene1. The two types of agents share the same scene context.
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Figure 10. Velocity distribution of car and truck in inD scene1.
Static trajectories have been filtered.

clear that modularization helps boost MoSA performance.

We qualitatively show the goal decoder output difference of
three examples in Fig. 14. We can observe that the adapted
model learns to cross at a particular position of the road,
which is not presented in the training data.

F.3. Motion Style Transfer across Agent Motion on SDD

We also demonstrate the efficacy of modularized architec-
ture on the SDD dataset. We utilize the cyclists data on
deathCircle 0 scene. The training and adaptation data are
constructed based on the average speed of the cyclist tra-
jectories. The training set contains low-speed trajectories
with the speed in the range of 0.5 to 3.5 pixel per second.
The adaptation set has cyclist trajectories with an average
speed in the range of 4 to 8 pixels per second. We use
Ntarget = {20} trajectories for adaptation. Given our setup,
the dominant underlying style factor that changes across do-
mains is the agent speed distribution (the scene context and
the type of agent are fixed). We benchmark the performance
of Y-Net-Mod given the five modularization strategies de-
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Figure 11. Agent Motion Transfer. Style Transfer from cars to
trucks on InD scene1 with Ntarget = 20 samples using different
MoSA configurations. [A] performs best while [S] worsens per-
formance. Error reported is Top-20 FDE in pixels across 5 seeds.
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Figure 12. Scene Transfer. Style Transfer across scenes on InD
pedestrians with Ntarget = 20 samples using different MoSA con-
figurations.[S+F] performs best while [A] worsens performance.
Error reported is Top-20 FDE in pixels across 5 seeds.

scribed in the paper. Rank of MoSA is set to 2.

Fig. 15 illustrates the performance of various modular adap-
tation strategies. The generalization error is very high as the
error accumulates quickly for fast-moving agents. Using
just 20 samples, updating only the agent motion module
[A] leads to the best performance, while including the scene
context module [S] during adaptation worsens performance.

G. Implementations Details
We present implementation details and hyperparameters
for each method and model training. For each experiment,
the best model is chosen based on the performance on the
validation set. All model pretraining follows the training,
validation and test split of 7:1:2. During adaptation, all
experiments utilize Adam optimizer and a batch size of 10,
unless mentioned otherwise. Learning rate for FT is 5e-5,
5e-4 for ET, 5e-5 for PA, 1e-4 for BN, and 5e-3, unless men-
tioned otherwise. The details for our designed experiments
are listed as below.

Motion Style Transfer across Agents on SDD. We pre-
train Y-Net network for 100 epochs and learning rate of 5e-5.
Rest of the hyper-parameters are kept the same as (Man-
galam et al., 2021). We adapt the pretrained model using
Ntarget = {10, 20, 30} trajectories and utilize 80 trajecto-
ries for validation. We adapt the pretrained model for 100
epochs with an early stop value of 30 epochs. For MoSA,
the rank value is set to 3.

Motion Style Transfer across Scenes on inD. In this
experiment, we utilize the pretrained model provided by
Y-Net paper (Mangalam et al., 2021). We adapt this model
using Ntarget = {20} trajectories and use 40 trajectories
for validation. The pretrained model is 100 epochs. Fig. 14

illustrates the adaptation performance of MoSA using 30
samples. MoSA learns the unseen behavior of pedestri-
ans crossing at a particular segment of the road, that was
unobserved in the training scenes of inD.

Motion Style Transfer across Scenes on L5. To simu-
late a scene context transfer scenario, we split the dataset
as shown in Fig. 8. The ViT-Tiny model is trained on the
majority route shown in green and adapted to the blue route
that was not seen during training. We follow the training
strategy provided in Houston et al. (2020): specifically, the
network is trained to accept BEV rasters of size 224× 224
pixels (centered around the SDV) to predict future (x, y)
positions over a 1.2 second horizon. The hyper-parameters
of the ViT-Tiny architecture are kept the same as in (Doso-
vitskiy et al., 2021). We train the model on the training
data corresponding to the majority route for 15 epochs using
batch size of 64. To simulate low-resource settings dur-
ing adaptation, the network is shown the unseen route only
once, sampled at different rates. As a result, we adapt for
Nbatches = {4, 8, 15, 24, 36} with a batch size of 64. We
benchmark the following four cases: 1) Full model fine-
tuning with learning rate of 1e-4, 2) Final layer fine-tuning
with learning rate of 3e-4, 3) Adaptive layer normalization
with a learning rate of 1e-4, 4) MoSA (ours) with rank value
of 8 and learning rate of 3e-3. We apply MoSA across the
query and value matrices of each attention layer. We ob-
serve that applying MoSA across the feed-forward layers
deteriorated performance. We adapt all the methods for 250
epochs using a one-cycle learning rate scheduler.

Motion Style Transfer across Agents on inD with Mod-
ular Structure. We perform style transfer from cars to
trucks in scene1 of inD. Cars and trucks data have different
speed distribution (see Fig. 9) but share the same context
as shown in Fig. 9. Trajectories with an average speed less
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Figure 13. Illustration of the difference in goal decoder output of Y-Net-Mod with various adaptation strategies for agent motion style
transfer on InD (Red is positive, blue is negative). In both cases (two rows), adapting the agent motion encoder alone [A] is sufficient to
effectively transfer the model from cars to trucks, as they share the same scene context.
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Figure 14. Illustration of the difference in goal decoder output of Y-Net on the scene style transfer on InD using our motion style adapters
(Red is positive, blue is negative). Observe that in the adapted scene, pedestrians tend to cross at a particular segment of the road. This
behavior did not occur during the pre-training. MoSA learns this novel behavior using just 30 samples of adaptation.

than 0.2 pixels per second are filtered out. We train a Y-Net-
Mod model on cars and adapt the model to trucks in which
Ntarget = {20} trajectories are used for adaptation and 40
trajectories for validation.

Motion Style Transfer across Scenes on inD with Mod-
ular Structure. We pretrained Y-Net-Mod model using
pedestrian data from scene ids = {2, 3, 4} and transferred to
pedestrian data from scene1 following the setup in (Man-
galam et al., 2021). The adaptation uses Ntarget = {20}

for fine-tuning and 20 trajectories for validation.

Motion Style Transfer across Agent Motion on SDD with
Modular Structure. We pretrain a Y-Net-Mod model
using slow cyclists from deathCircle 0 scene and adapt to
fast cyclists from the same scene. The pretraining set has
1213 trajectories. The adaptation set has 381 trajectories
where 50 trajectories are used for validation.
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Figure 15. Agent Motion Transfer on SDD. Style Transfer from slow cyclists to fast cyclists on death circle scene with Ntarget = 20
samples using different MoSA configurations. [A] performs best while [S] worsens performance. Error reported across 5 seeds.

H. Conclusion
In this work, we tackled the task of efficient motion style
transfer wherein we adapt a trained forecasting model on a
target domain comprising limited samples of unseen target
styles. We argue that we only need to model the under-
lying style shift across domains, which often reside in a
low-dimensional space. We formulated this intuition into
our motion style adapter (MoSA) design, which is trained
to infer and update the style factors of variation in the target
domain while keeping the pretrained parameters frozen. Ad-
ditionally, we presented a modularized style transfer strategy
that updates only a subset of the model given the nature of
the style transfer problem. Extensive experimentation on
three real-world datasets demonstrated the effectiveness of
our approach.


