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Abstract

Contemporary autonomous vehicle (AV) bench-
marks have advanced techniques for training
3D detectors, particularly on large-scale lidar
data. Surprisingly, although semantic class la-
bels naturally follow a long-tailed distribution,
contemporary benchmarks focus on only a few
common classes (e.g., pedestrian and car)
and neglect many rare classes in-the-tail (e.g.,
debris and stroller). However, AVs must
still detect rare classes to ensure safe opera-
tion. Moreover, semantic classes are often orga-
nized within a hierarchy, e.g., tail classes such as
child and construction-worker are ar-
guably subclasses of pedestrian. However,
such hierarchical relationships are often ignored,
which may lead to misleading estimates of perfor-
mance and missed opportunities for algorithmic
innovation. We address these challenges by for-
mally studying the problem of Long-Tailed 3D
Detection (LT3D), which evaluates on all classes,
including those in-the-tail. We develop hierar-
chical losses that promote feature sharing across
common-vs-rare classes, as well as improved de-
tection metrics that award partial credit to “rea-
sonable” mistakes respecting the hierarchy (e.g.,
mistaking a child for an adult). Finally, we
point out that fine-grained tail class accuracy is
particularly improved via multimodal fusion of
RGB images with LiDAR; simply put, small fine-
grained classes are challenging to identify from
sparse (LiDAR) geometry alone, suggesting that
multimodal cues are crucial to long-tailed 3D de-
tection. Our modifications improve accuracy by
5% AP on average for all classes, and dramatically
improve AP for rare classes (e.g., stroller
AP improves from 3.6 to 31.6).
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1. Introduction

3D object detection is a key component in many robotic
systems such as autonomous vehicles (AVs) (Geiger et al.,
2012; Caesar et al., 2020). To facilitate research in
this space, the AV industry has released large-scale 3D-
annotated multimodal datasets (Caesar et al., 2020; Chang
etal., 2019; Sun et al., 2020). However, these datasets bench-
mark on only a few common classes such as pedestrian
and car. In practice, safe navigation (Taeihagh & Lim,
2019; Wong et al., 2020) requires AVs to reliably detect
rare-class objects such as child and stroller. This
motivates the problem of Long-Tailed 3D Detection (LT3D),
which requires detecting objects from both common and
rare classes.

Status Quo. Among contemporary AV datasets,
nuScenes (Caesar et al., 2020) has exhaustively annotated
objects of various classes crucial to AVs (Fig. 1) and orga-
nized them with a semantic hierarchy (Fig. 3). However,
the nuScenes benchmark ignores most rare classes, pre-
sumably because they have too few examples to train good
detectors. As it focuses on only a few (common) classes,
prior works miss opportunities to exploit this semantic hi-
erarchy during training. We argue that these benchmarking
protocols are flawed because detecting fine-grained classes
is useful for downstream tasks such as motion planning.
This motivates us to study LT3D by re-purposing all anno-
tated classes in nuScenes.

Protocol. LT3D requires 3D localization and recognition of
objects from each of the common (e.g., adult and car)
and rare classes (e.g, child and stroller). Moreover,
for safety-critical robots such as autonomous vehicles, we
believe detecting but mis-classifying rare objects (e.g.,
mis-classifying a child as an adult) is preferable to
failing to detect them at all. Therefore, we propose a new
metric to quantify the severity of classification mistakes in
LT3D that exploits inter-class relationships to award partial
credit (Fig. 3). We use both the standard and proposed
metrics to evaluate 3D detectors on all classes.

Technical Insights. To address LT3D, we first retrain state-
of-the-art LiDAR-based 3D detectors on all classes. Naively
retraining detectors produces poor performance on rare
classes (e.g., yielding 0.1 AP on child and 3.6 AP on
stroller). We propose several algorithmic innovations
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Figure 1: According to the histogram of per-class object counts (on the left), the nuScenes benchmark focuses on the common classes
in cyan (e.g., car and barrier) but ignores rare ones in red (e.g., stroller and wheelchair). In fact, the benchmark creates
a superclass pedestrian by grouping multiple classes in green, including the common class adult and several rare classes (e.g.,
childand police-officer);this complicates the analysis of detection performance as pedestrian performance is dominated by
adult. Moreover, the ignored superclass pushable-pullable also contains diverse objects such as shopping-cart, dolly,
luggage and trash-can as shown in the top row (on the right). We argue that AVs should also detect rare classes as they can
affect AV behaviors. Following (Liu et al., 2019), we report performance with three groups of classes based on their cardinality (split by

dotted lines): Many, Medium, and Few.

to improve these results. First, to encourage feature sharing
across common-vs-rare classes, we learn a single feature
trunk, adding in hierarchical coarse classes that ensure fea-
tures will be useful for both common and rare classes.
Second, we find that LiDAR data is simply too impov-
erished for even humans to recognize certain tail objects
that tend to be small, such as strollers. We explore
multimodal-fusion detectors, and introduce a simple ap-
proach that post-processes single-modal 3D detections from
LiDAR and RGB inputs, filtering away detections that are
inconsistent across modalities. Our innovations significantly
improve performance by 5 AP on average, and dramatically
boost performance when allowing for partial credit (e.g.,
achieving 16.9 /38.8 AP for child/stroller).

Contributions. We make three major contributions. First,
we formulate the problem LT3D, emphasizing detection of
both common and rare classes in safety-critical AVs. Sec-
ond, we design LT3D’s benchmarking protocol and develop
a supplemental metric that awards partial credit depending
on the severity of misclassifications (e.g., misclassifying
child-vs-adult is less problematic than misclassifying
child-vs-car). Third, we propose several architecture-
agnostic approaches to LT3D, including a simple multi-
modal fusion technique that uses RGB to filter out false-
positive LiDAR-based detections, which significantly im-
proves detection precision for rare classes.

2. Related Works

3D Object Detection has been widely studied in the context
of autonomous vehicle (AV) research. Contemporary bench-
marks favor LIDAR-based detectors, emphasizing common
classes and ignoring rare ones. Approaches to 3D detec-
tion usually adopt an anchor-based model architecture that
defines per-class shapes to guide class-aware object detec-
tion (Lang et al., 2019; Zhu et al., 2019; Hu et al., 2019; Yan
etal., 2018; Wang et al., 2019). A recent anchor-free model,
CenterPoint (Yin et al., 2020) achieves the state-of-the-art
for LIDAR-based 3D object detection. Specifically, it learns
to predict an object’s center and estimates the 3D shape for
each detected object’s center. Existing LiDAR-based 3D
detectors exclusively focus on data from common classes
(Lang et al., 2019; Zhu et al., 2019; Yin et al., 2020) and do
not study how to detect rare classes. RBG-based 3D detec-
tors underperform LiDAR-based methods because the RGB
input does not provide reliable 3D measures (unlike LiDAR).
As aresult, RGB-based 3D detectors are not widely adopted.
However, in exploring LT3D we find that RGB-detectors
shine for detecting objects of rare classes. Importantly,
multimodal fusion significantly improves LT3D.

Multimodal 3D Detection. Conventional wisdom suggests
that fusing multimodal cues, particularly using LiDAR and
RGB, can improve 3D detection. Intuitively, LiDAR faith-
fully measures the 3D world (although it has notoriously
sparse point returns), and RGB is high-resolution (but lacks
3D information). Multimodal fusion for 3D detection is an
active field of exploration. Existing methods suggest dif-
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Figure 2: Multimodal filtering effectively removes high-scoring false-positive LIDAR detections. The green boxes are ground-truth
strollers, while the blue boxes are st roller detections from our best performing models, liDAR-based detector CenterPoint (Yin
et al., 2020) (left) and RGB-based detector FCOS3D (Wang et al., 2021) (mid). The final filtered result removes LiDAR detections not

within m meters of any RGB detection (right).

ferent ways to fuse the two modalities. Proposed methods
encode separate modalities and fuse object proposals (Chen
et al., 2017; Ku et al., 2018; Yoo et al., 2020; Bai et al.,
2022; Chen et al., 2021), augment LiDAR points with either
RGB features (Sindagi et al., 2019), augment RGB images
with LiDAR points (You et al., 2020) or add semantic in-
formation obtained by processing RGB inputs (Vora et al.,
2020; Yin et al., 2021). Others propose stage-wise methods
that first detect boxes over images and localize in 3D with
LiDAR (Qi et al., 2018) and fuse detections from single-
modal detectors (Xu et al., 2018; Pang et al., 2020). While
the above methods have not been tested for LT3D, our work
shows that RGB is a key modality for LT3D.

Long-Tailed Perception (LTP). Real-world data tends to
follow long-tailed class distributions (Reed, 2001), i.e., a
few classes are dominant in the data, while many others are
rarely seen. LTP is a long-standing problem in the litera-
ture (Liu et al., 2019). It has been widely studied through
the lens of image classification and requires training on
class-imbalanced data, aiming for high accuracy averaged
across imbalanced classes (Liu et al., 2019; Zhang et al.,
2021b; Alshammari et al., 2022). Existing methods propose
reweighting losses (Cui et al., 2019; Khan et al., 2017; Cao
et al., 2019; Khan et al., 2019; Huang et al., 2019; Zhang
et al., 2021a), rebalancing data sampling (Drummond et al.,
2003; Chawla et al., 2002; Han et al., 2005), balancing gradi-
ents computed from imbalanced classes (Tang et al., 2020),
and balancing network weights (Alshammari et al., 2022).
Others study LTP through the lens of 2D object detection
over RGB images (Gupta et al., 2019). To the best of our
knowledge, long-tailed 3D detection (LT3D) has not been
explored yet. In LT3D, we find a unique challenge, rare
classes are not only infrequent, but are also difficult to dis-
tinguish using LiDAR alone. This motivates us to use RGB
to complement LiDAR. We find using both RGB (for better
recognition) and LiDAR (for better 3D localization) helps
detect rare classes.

3. LT3D: Methodology

To approach LT3D, we first retrain SOTA 3D detectors
on all classes, including LiDAR-based detectors (Point-
Pillars (Lang et al., 2019), CBGS (Zhu et al., 2019), and
CenterPoint (Yin et al., 2020)), an RGB-based detector
FCOS3D (Wang et al., 2021), and multimodal detectors
(MVP (Yin et al., 2021) and TransFusion (Bai et al., 2022)).
We further introduce several modifications to these models
that consistently improve LT3D.

Grouping-Free Detector Head. Extending existing 3D
detectors to train with more classes is surprisingly chal-
lenging. Many contemporary networks use a multi-head
architecture that groups classes of similar size and shape to
facilitate efficient feature sharing. For example, CenterPoint
groups pedestrian and traffic-cone since these
objects are both tall and skinny. However, multi-headed
grouping strategies may not work for diverse classes like
pushable-pullable and debris. Therefore, we first
consider making each class its own group to avoid hand-
crafted grouping heuristics. However, heads of rare classes
overfit and added heads use considerably more GPU mem-
ory. Our final solution is to merge all classes into a single
group with a proportionally heavier detector head to sim-
plify training. Adding a new class is as simple as adding
a single convolutional channel to the detector output. Our
grouping-free detector head achieves unchanged accuracy
over grouping-based methods.

Training with Semantic Hierarchies. nuScenes defines
a semantic hierarchy (Fig. 3) for all classes, grouping se-
mantically similar classes under coarse-grained categories.
We leverage this hierarchy during training. Specifically,
we train detectors to predict three labels for each object:
its fine-grained label (e.g., child, its coarse class (e.g.,
pedestrian), and the root class ob ject. Given that we
adopt a grouping-free detector head that outputs separate
“multitask” heatmaps for each class, we use a per-class logit-
loss rather than multi-class softmax loss, essentially treating
each class to be detected as a separate task (that shares the
same feature trunk). Given this architectural modification,
it is “trivial” to add additional coarse classes. Crucially, be-
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Figure 3: nuScenes defines a semantic hierarchy (on the left) for all annotated classes (Fig. 1). We highlight common classes
in white and rare classes in gold. The standard nuScenes benchmark makes two choices for dealing with rare classes: (1) ig-
nore them (e.g., stroller and pushable-pullable), or (2) group them into coarse-grained classes (e.g., adult, child,
construction-worker, police-officer are grouped as pedestrian). Since the pedestrian class is dominated by
adult (Fig. 1), the standard benchmarking protocol masks the challenge of detecting rare classes like child and police—-officer.
We leverage this hierarchy during training (on the right) by predicting class labels at multiple levels of the hierarchy. Specifically, we
train detectors to predict three labels for each object: its fine-grained label (e.g., child, its coarse class (e.g., pedestrian), and the
root-level class object. This means that the final vocabulary of classes is no longer mutually exclusive, complicating the application of
multi-class softmax losses. To address this, use per-class logit loss functions that learn separate spatial heatmaps for each class.

cause we do not employ softmax losses, adding a vehicle
heatmap does not directly interfere with the car heatmap
(as they would with a multi-class softmax loss). However,
this might produce repeated detections on the same test ob-
ject. We address that by simply ignoring coarse detections
at test time. Perhaps surprisingly, this training method im-
proves detection performance not only for rare classes,
but also for common classes. This is presumably because it
regularizes the learned features to generalize better.

Augmentation Schedule. Class-balanced resampling is
a common technique in learning with long-tailed classes.
This augmentation strategy increases the number of rare
objects seen in training but skews the class distribution and
leads to more false positives for rare classes in inference.
Prior works (Vora et al., 2020; Bai et al., 2022) suggest
disabling class-balanced resampling for the last few training
epochs to better match the real class distribution, reducing
false positives. We validate this approach in training 3D
detectors and find that it often improves performance for
rare classes at the cost of common classes.

Multimodal Fusion by Filtering. Small fine-grained
classes are challenging to identify from sparse (LiDAR) ge-
ometry alone, suggesting that multimodal cues can improve
long-tailed detection. We evaluate several multimodal fu-
sion algorithms, but find a simple strategy of post-processing
filtering to work remarkably well. Although LiDAR-based
detectors are widely adopted for 3D detection, we find that
they produce many high-scoring false positives (FPs) for
rare classes due to misclassification. We focus on removing
such FPs. To this end, we use an RGB-based detector to
filter out high-scoring false-positive LiDAR detections by
leveraging two insights: (1) LiDAR-based 3D-detectors are
accurate w.r.t 3D localization and yield high recall (though

classification is poor), and (2) RGB-based 3D-detections
are accurate w.r.t recognition (though 3D localization is
poor). Fig. 2 demonstrates this filtering strategy. For each
RGB-based detection, we search in a radius of m meters
for a LiDAR-based detection, keep them and remove all the
others (that are not close to any RGB-based detections). We
use FCOS3D (Wang et al., 2021) as the RGB-based detector
in this work.

4. LT3D: Evaluation Protocol

Conceptually, LT3D extends the traditional 3D detection
problem, which focuses on identifying objects from K
common classes, by further requiring detection of N rare
classes. Recall that as LT3D is motivated by safety concerns
in AVs, we further propose a complementary hierarchical
AP metric to better diagnose detector performance by ana-
lyzing cross-category mistakes.

4.1. Evaluation Metrics

As LT3D emphasizes detection performance on all classes,
we report the metrics for three groups of classes based on
their cardinality (Fig. 1-left): many (>50k objects per class),
medium (5k~50k), and few (<5k). We describe the metrics
below.

Standard Detection Metrics. Mean average precision
(mAP) is an established metric for object detection (Ev-
eringham et al., 2015; Geiger et al., 2012; Lin et al., 2014).
For 3D detection on LiDAR sweeps, a true positive (TP)
is defined as a detection that has a center distance within
a distance threshold on the ground-plane to a ground-truth
annotation (Caesar et al., 2020). mAP computes the mean
of AP over classes, where per-class AP is the area under the
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precision-recall curve, and distance thresholds of [0.5, 1, 2,
4] meters.

Hierarchical Mean Average Precision (mAP;). For
safety critical applications, although correctly localizing
and classifying an object is ideal, detecting and misclassify-
ing some object is more desirable than a missed detection
(e.g., detect but misclassify a child as adult versus not
detecting this chi1d). Therefore, we introduce hierarchi-
cal AP (AP;) which considers such semantic relationships
across classes to award partial credit. We report results for
both standard detection metrics and our proposed metric.

To encode these relationships between classes, we leverage
the semantic hierarchy (Fig. 3) defined by nuScenes. We de-
rive partial credit as a function of semantic similarity using
the least common ancestor (LCA) distance metric. Hierar-
chical metrics have been proposed for image classification
(Deng et al., 2009), but have not been explored for object
detection. Extending this metric for object detection is chal-
lenging because we must consider how to jointly evaluate
semantic and spatial overlap. We define our hierarchical AP
metric as follows, according to the semantic hierarchy de-
fined in Figure 3. For clarity, we will describe the procedure
in context of computing APz for some arbitrary class C.

LCA=0: Consider the set predictions and ground-truth
boxes for C. Label the set of predictions that overlap with
ground-truth boxes for C' as true positives. Other predic-
tions are false positives. This is identical to the standard AP
metric.

LCA=1: Consider the predictions for C, and ground-truth
boxes for C' and all sibling classes of C' (that have LCA
distance to C' of 1). Label the set of predictions that overlap
a ground-truth box of C as a true positive. Label the set of
predictions that overlap sibling classes as ignored (Lin
et al., 2014). All other predictions are false positives.

LCA=2: Consider the predictions for C' and ground-truth
boxes for C' and all classes that have LCA distance to C'
less than 2. For nuScenes, this includes all classes. Label
the set of predictions that overlap ground-truth boxes for C'
as true positives. Label the set of predictions that overlap
other classes as ignored. All other predictions are false
positives.

5. Experiments

We conduct experiments to better understand the LT3D
problem, and gain insights by validating our techniques
described in Section 3. Specifically, we aim to answer the
following questions:!

1. Are rare classes more difficult to detect than

! Answers: yes, yes, yes, yes.

common classes?

2. Are objects from rare classes sufficiently localized
but mis-classified?

3. Does training with the semantic hierarchy improve
detection performance for LT3D?

4. Does multimodal fusion help detect rare classes?

We start this section by introducing the model architecture,
implementation and dataset.

Model Architecture. For LiDAR-based 3D detectors, we
use PointPillars (Lang et al., 2019), CBGS (Zhu et al., 2019),
and CenterPoint (Yin et al., 2020), which are widely bench-
marked in the literature. For fusion-based 3D detectors,
we use MVP (Yin et al., 2021) and TransFusion (Bai et al.,
2022), which are recently released state-of-the-art methods.
MVP uses off-the-shelf RGB segmentation models to local-
ize objects and densify LiDAR point clouds. TransFusion
proposes an end-to-end DETR-like approach (Carion et al.,
2020) for multimodal 3D detection.

Implementation. We use the PyTorch toolbox (Paszke
et al., 2019) to train all models for 20 epochs with the Adam
optimizer (Kingma & Ba, 2015) and a one-cycle learning
rate scheduler (Smith, 2017). In training, we adopt data
augmentation techniques introduced by (Yin et al., 2020).
When using the introduced data augmentation schedule (cf.
Section 3), we train models for 15 epochs with data aug-
mentation enabled, and 5 epochs without.

5.1. Dataset

Among many AV datasets (e.g., Argoverse (Chang et al.,
2019), KITTI (Geiger et al., 2012) and Waymo (Sun et al.,
2020)), we use nuScenes to explore LT3D because it has the
most long-tailed classes (23 in total) arranged in a semantic
hierarchy (Fig. 3). The nuScenes benchmark ignores most
of these annotated classes and the hierarchy, resulting in
10 classes for its final benchmark (Fig. 1). For LT3D, we
evaluate on the 19 classes at the finest level (i.e., two levels
below the root, cf. Fig. 3). Following prior work, we use
the nuScenes official train-set to train all the models and
evaluate on the nuScenes validation set.

Retraining state-of-the-art 3D detectors for LT3D. We
retrain four 3D detectors, namely FCOS3D (Wang et al.,
2021), PointPillars (Lang et al., 2019), CBGS (Zhu et al.,
2019), and CenterPoint (Yin et al., 2020). FCOS3D oper-
ates on monocular images. The other three detectors take
an aggregated stack of ten LiDAR-sweeps as input. All
four models predict 3D bounding boxes for 19 classes as
defined by the nuScenes LT3D protocol. Table 1 shows that
mAP of rare classes are much lower than common classes,
confirming that rare classes are more difficult to detect
than common ones. Moreover, LIDAR-based detectors that
perform well on common classes tend to also perform well
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Table 1: Benchmarking detectors for LT3D (measured by mAP). We present several salient conclusions. First, training with the
semantic hierarchy improves all methods for LT3D, e.g., improving PointPillars and CBGS by 1% AP and CenterPoint by 3% AP averaged
over A11 classes. It seems to have a bigger impact on the heatmap-based detector head than the standard anchor-based detector heads.
It also slightly helps multimodal detectors (within 1% AP for MVP and TransFusion). Second, multimodal filtering yields 4~11 AP
improvement on Medium and Few classes! This is surprising given that FCOS3D is a less powerful 3D detector on its own. Interestingly,
it also improves multimodal detectors (3.4% and 1.6% AP improvement for MVP and TransFusion on A11 classes), demonstrating
the importance of using RGB to improve LT3D with better recognition. Third, perhaps surprisingly, post-hoc multimodal filtering of
LiDAR-only detector CenterPoint with RGB-only detector FCOS3D performs the best, surpassing multimodal detectors MVP and
TransFusion. Lastly, data augmentation schedules do not necessarily improve LT3D performance, demonstrating the challenge of 3D

detection in the long-tail.

Method Multimodal Many Medium Few All
FCOS3D (Wang et al., 2021) 39.0 233 2.9 20.9
PointPillars (Lang et al., 2019) 64.2 28.4 34 30.0
+ Hierarchy 66.4 304 2.9 31.2
w/ Data Aug. 54.4 24.2 1.8 25.1
w/ Filtering v 66.2 41.0 4.4 35.8
CBGS (Zhu et al., 2019) 472 104 0.1 17.2
+ Hierarchy 49.5 11.1 0.1 18.1
w/ Data Aug. 49.9 17.1 0.1 20.6
w/ Filtering v 48.0 20.3 0.1 21.5
CenterPoint (Yin et al., 2020) 73.7 41.3 3.0 37.5
+ Hierarchy 77.1 45.1 4.3 40.4
w/ Data Aug. 73.8 445 7.4 40.3
w/ Filtering v 77.1 49.0 9.4 43.6
MVP (Yin et al., 2021) v 65.6 31.6 1.5 31.0
+ Hierarchy v 67.0 33.0 0.1 31.6
w/ Data Aug. v 65.9 35.8 0.1 325
w/ Filtering v 67.1 39.2 1.6 34.4
TransFusion (Bai et al., 2022) 68.5 42.8 8.4 38.5
+ Camera v 73.9 41.2 9.8 39.8
w/ Data Aug. v 73.4 40.9 8.2 39.0
w/ Filtering v 73.9 425 9.1 40.1

on rare classes. See details in the caption of Table 1.

Training with Semantic Hierarchy. Next, we modify our
LiDAR-based detectors to jointly predict class labels at
different levels of the semantic hierarchy. For example,
we modify the detector to additionally classify stroller
as pedestrian and object. The semantic hierarchy
naturally groups classes based on shared attributes and may
have complementary features. Moreover, training with the
semantic hierarchy allows rare classes within each group
to learn better features by sharing with common classes.
This approach is generally effective, as shown in Table 1,
improving accuracy for classes with Many examples by 2%
AP, Medium examples by 2% AP and Few examples by 1%
AP. Notably, training with the semantic hierarchy improves
CenterPoint by 4% AP on Many classes.

Data Augmentation Schedule. Prior works (Xu et al.,
2018; Bai et al., 2022) suggest disabling copy-paste aug-
mentation for the last few epochs of training to reduce the
number of false positive detections. We validate this claim
for various detector architectures and find that although it
seems to help rare classes by 3% AP, but hurts common

classes by 4% AP (c.f. CenterPoint).

Multimodal Filtering. Detecting rare classes from
LiDAR-only is challenging since its difficult to learn to
recognize objects from sparse LiDAR points and from lim-
ited examples. As a result, LIDAR-detectors often have
many high-scoring FPs (Fig. 2), resulting in low AP. Using
RGB detections to filter the LiDAR detections results in sig-
nificant performance improvement on rare classes — 4~11
AP increases on classes of Medium and Few for all models
(Table 1)!

End-to-End Multimodal Methods. Since multimodal cues
significantly improve LT3D, we are motivated to explore
end-to-end approaches. Specifically, we retrain MVP (Yin
et al., 2021) and TransFusion (Bai et al., 2022) on all 19
classes. MVP trains a 2D semantic segmentation model
(c.f. CenterNet2 (Zhou et al., 2021)) on nulmages. Using
this trained model, MVP segments classes of interest and
augments the point cloud with virtual points. Applying this
method to LT3D shows 10 AP worse performance com-
pared to LiDAR-only methods (c.f. CenterPoint), because
(1) it is challenging to retrain the segmentation network
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Table 2: Diagnosis using the mAP; metric on selected classes. We analyze the best-performing LiDAR-only model CenterPoint
and multimodal model TransFusion, with / without our hierarchical loss (hier) and mutimodal filtering technique (filfering). Comparing
the rows of “LCA=0" for with and without our techniques (for CenterPoint and TransFusion respectively), we see our techniques
bring significantly improvements on classes with medium and few examples such as construction-vehicle (CV),bicycle,
motorcycle (MC), construction-worker (CW), stroller, and pushable-pullable (PP). Moreover, performance
increases significantly from LCA=0 to LCA=1 compared against LCA=1 to LCA=2, suggesting that most misclassification occurs
amongst semantically similar classes (Table 2). Unsurprisingly, we see a considerable jump between LCA=0 and LCA=1 for rare classes,
confirming that objects from rare classes are often detected but misclassified as some sibling classes.

Method mAPyg  Car Adult Truck CV Bicycle MC Child CW Stroller PP
LCA=0 86.5 840 539 235 472 602 0.1 202 36 322

CenterPoint LCA=1 873 847 595 252 488 617 0.1 264 38 324
LCA=2 873 850 59.6 253 495 621 0.1 272 40 329

CenterPoint LCA=0 885 866 634 290 585 682 53 358 316 393
S Hier. & Fier LCA=1 894 874 724 313 612 697 152 520 377 394
woHer. & LIer- 1 ca-p 895 877 725 315 623 699 169 563 388 398
LCA=0 844 845 585 151 449 572 10 151 32 196

TransFusion LCA=1 855 857 674 218 467 591 16 218 37 198
LCA=2 855 86.1 675 226 477 599 1.7 226 42 204

TransFusion LCA=0 844 842 584 253 523 628 40 275 147 273
o Hior &‘}.her.n LCA=1 860 854 673 266 557 640 251 467 243 274
ter G LUIErng 1 cA=> 860 859 674 270 569 643 258 486 283 279

CenterNet2 for long-tailed classes and it works particularly
poorly on rare classes. We retrain TransFusion, downsam-
pling the RGB images by a factor of 2 to fit the model in
GPU memory. Surprisingly, TransFusion performs worse
than CenterPoint for LT3D, indicating that strong perfor-
mance on common classes (as widely benchmarked) is not
indicative of trends for all long-tailed classes. Lastly, our
multimodal filtering strategy still improves these end-to-
end fusion methods slightly, e.g., it increases mAP on A11
classes by 3.4% and 0.3% AP for MVP and TransFusion (cf.
Table 1).

Benchmarking with Hierarchical Average Precision
(mAPg). For safety-critical AVs, mis-classification be-
tween semantically similar classes is preferable to missed
detections. Our proposed mAP; allows for more careful di-
agnosis of 3D detectors. We find performance increases
significantly from LCA=0 to LCA=1 compared against
LCA=1 to LCA=2, confirming that most mis-classification
occurs amongst semantically similar classes. That said, im-
proving rare object classification should greatly improve
LT3D. Unsurprisingly, we see a considerable jump between
LCA=0 and LCA=1 for rare classes, confirming that objects
from rare classes are often detected but mis-classified.
Somewhat surprisingly, we find that despite allowing for
partial credit, child AP is still alarmingly low compared
to adult. Models cannot confidently detect child, even
accounting for mis-classification.

6. Conclusion

We explore the problem of long-tailed 3D detection (LT3D),
detecting objects not only from common classes but also

from many rare classes. This problem is motivated by
the operational safety of autonomous vehicles (AVs), which
must reliably detect rare classes for appropriate motion
planning and collision avoidance. To study LT3D, we es-
tablish rigorous evaluation protocols that allow for partial
credit to better diagnose 3D detectors.

Limitations: Our work explores long-tailed 3D detection
(LT3D) in the context of autonomous vehicles (AVs). LT3D
emphasizes object detection for rare classes which can
be safety-critical for downstream AV tasks such as motion
planning and collision avoidance. However, our work does
not study how solving LT3D directly affects these tasks.
Future work should address this limitation.

Another limitation, shared by contemporary benchmarks,
is that our setup does not consider the correlation between
individual classes. For example, the rare-class stroller
is often pushed by an adult. One may argue that detecting
adult is sufficient for safe navigation. However, edge
cases can occur in the real world where a stroller can
be unattended. Therefore, we expect future work to diagnose
class correlation and such edge cases.

Our study shows that state-of-the-art LiDAR-based 3D de-
tectors achieve poor performance on rare classes because
they often misclassify rare-class objects. We propose sev-
eral algorithmic innovations to improve LT3D, including a
group-free detector head, hierarchical losses that promote
feature sharing across long-tailed classes, and a simple mul-
timodal fusion method achieving significant improvement
for LT3D. Importantly, our study shows that multimodal
cues are crucial to LT3D, suggesting that multimodal 3D
detectors can shine in the long-tail.
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