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Abstract
In an autonomous driving system, perception -
identification of features and objects from the en-
vironment - is crucial. Autonomous racing, in
particular, features high speeds and small margins
that demand rapid and accurate perception sys-
tems. During the race, the weather can change
abruptly, causing significant degradation in per-
ception, resulting in ineffective manoeuvres. In
order to improve detection in adverse weather,
deep-learning-based models typically require ex-
tensive datasets captured in such conditions - the
collection of which is a protracted and costly pro-
cess. However, recent developments in Cycle-
GAN architectures allow the synthesis of highly
realistic scenes in multiple weather conditions. To
this end, we introduce an approach of using syn-
thesised adverse condition datasets in autonomous
racing (generated using CycleGAN) to improve
the performance of four out of five state-of-the-
art detectors by an average of 42.7 and 4.4 mean
average precision (mAP) percentage points in the
presence of night-time conditions and droplets,
respectively. Furthermore, we present a compara-
tive analysis of five object detectors - identifying
the optimal pairing of detector and training data
for use during autonomous racing in challenging
conditions.

1. Introduction
Autonomous driving is a current focus of many governments,
startups, already-established corporations, and research labs
(CBI Insights, 2020). Many studies aim to create an SAE
level 4 or level 5 autonomous vehicle (AV) (International
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Society of Automotive Engineers (SAE), 2018), able to op-
erate in unstructured environments and adverse conditions.
From the AV’s perspective, an adverse condition is any con-
dition with which the detection model has never experienced
during training. Of particular interest are weather and light-
ing effects that change the appearance of objects, such as
droplets (which can occlude objects and blur images), or
night driving.

Research in AVs has stimulated the development of au-
tonomous racing, where cars designed for racing compete
fiercely on racetracks, potentially under varied weather con-
ditions which may be subject to rapid changes. The close,
competitive nature of racing amplifies the effects of any
performance gains (or weaknesses) in the AV control sys-
tem in a safe, controlled test environment (Culley et al.,
2020). Autonomous racing is therefore an ideal application
to test the extreme operating limits of AVs, accelerating the
development process of AV algorithms - including object
detection in adverse conditions.

Two main approaches exist to AV control systems. The
first is an ‘end-to-end’ AI-based approach that takes vi-
sual inputs and outputs control commands (Bansal et al.,
2018). The end-to-end nature of such systems, however,
makes them black boxes: they lack explainability and are
difficult to debug. Furthermore, they require an extensive
amount of labelled training data; however, gathering such
data is time-consuming and expensive. The second approach
breaks down the AV control system into a pipeline of inter-
acting subsystems including perception, decision making,
and control (Badue et al., 2021) - enhancing explainability,
debugging, and a higher confidence in the ability of the
autonomous vehicle to handle a variety of road scenarios.
Both approaches, however, are vulnerable to adverse condi-
tions, as the latter distorts the visual input upon which they
depend.

AVs see (perceive) the world through visual inputs, acquired
by sensors such as (optical) cameras and LiDAR - both of
which are susceptible to adverse conditions including snow,
rain, fog, and night (Mohammed et al., 2020). Rain droplets
can accumulate on camera lenses, occluding objects and
agents, or distorting their shapes. If a LiDAR beam inter-
sects a rain droplet at a short distance from the transmitter,
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the raindrop can reflect enough of the beam back to the
receiver to cause the raindrop to be detected as an object
(Espineira et al., 2021). Night driving is particularly chal-
lenging for optical sensors; the level of reflected light from
target objects or agents to the camera sensor is low, causing
dim or barely recognisable objects.

Perception tasks, including object detection, semantic seg-
mentation, action recognition, and trajectory prediction are
hampered by poor visual inputs caused by adverse weather,
resulting in missed and incorrect detections (Mohammed
et al., 2020) - of critical importance for AVs safely to ‘see’
other road users. Errors in detections will propagate through
downstream tasks including path planning and control, caus-
ing inaccurate and unreliable manoeuvres and compromis-
ing the safety of other road users. In the particular applica-
tion of AV racing, a small error in perception may result in
a considerable deviation from the optimal path (Katrakazas
et al., 2015) and a loss of time or even penalties or accidents.
In both on-road and racing applications, the AV industry has
a critical and urgent need to mitigate or deal with the signif-
icant degradation of perception caused by adverse weather
conditions (Shah et al., 2017; Fursa et al., 2021).

Since both end-to-end and independent-subsystems ap-
proaches typically use machine learning models to under-
stand the visual inputs, one way to improve them in adverse
weather is to retrain those models on more data that contains
adverse weather conditions. However, obtaining this data is
time-consuming, expensive, and at the mercy of the weather.
It also introduces a very costly and laborious process of
(manually) labelling the collected data for different tasks
like detection or segmentation. To overcome this challenge,
researchers have suggested synthesising adverse weather
datasets using simulators (Zadok et al., 2019) or simple
augmentation algorithms (Fursa et al., 2021). However, the
applicability of these approaches for enhancement of object
detection in a real-world setting remains uncertain, due to
the lack of visual realism in the imagery.

A recent promising approach is harnessing CycleGAN to
generate more realistic weather augmentations using style
transfer. A small number of studies have explored the use of
CycleGAN to improve perception performance in adverse
weather in the context of on-road autonomous driving tasks
(Porav et al., 2020; Uřičář et al., 2019; Mus, at et al., 2021),
but as yet, no studies have attempted to exploit this potential
in the context of autonomous racing.

Furthermore, various object detection models have been
proposed for real-time use in AV applications (Jocher, 2021;
Jocher et al., 2020; Ren et al., 2015; Tan et al., 2020), how-
ever few studies have compared different detectors for use
in autonomous driving applications (Gupta et al., 2021) -
let alone with a detailed comparison of the detection perfor-
mance and latencies introduced.

This study represents the first attempt to harness CycleGAN-
based weather appearance transfer to generate realistic train-
ing data for multiple adverse weather conditions in au-
tonomous racing, and explores the performance of five lead-
ing object detectors for real-time object detection in adverse
conditions. Thus, the contributions of this study are:

1. An approach to using individual synthesised adverse
weather conditions to improve detection performance
under multiple real weather conditions in autonomous
racing.

2. Performance improvements for four state-of-the-art
object detectors under multiple real adverse weather
conditions by training them on synthesised adverse
weather datasets.

3. Benchmark results for five different object detectors,
a comparative analysis of their performance in terms
of accuracy and speed in both sunny and adverse con-
ditions, and the identification of the optimal detector
for the specific task of object detection for autonomous
racing cars.

2. Related work
2.1. Object Detection in Autonomous Racing

Traffic cones are used to regulate traffic and to mark rac-
ing circuit layout, therefore detecting them is crucial for
autonomous driving and autonomous racing. Towards cone
detection in a racing context, papers such as (Qie et al.,
2020) employed a colour-based detector, whereas (TIAN
et al., 2018) used a Histogram of Oriented Gradients (HOG)
representation. Many systems, however, including (Dhall
et al., 2019; Strobel et al., 2020; Culley et al., 2020), use dif-
ferent versions of the well-known YOLO detector (Redmon
et al., 2016) because of its speed, accuracy, and reliability.
A variety of object detectors have been used in AV racing,
however, there is no clear study that makes a comparative
analysis between these models, therefore, an investigation
into the optimal detector, considering detection accuracy
and speed, is desirable.

Despite being the most accurate and commonly-used class
of detectors, Convolutional Neural Network-based mod-
els exhibit significantly degraded performance in adverse
weather conditions (Fursa et al., 2021). While this can be
mitigated by training the model on datasets that contain ad-
verse weather, as previously noted, generating such datasets
is neither easy nor quick. Various alternative solutions to
generate equivalent data have been proposed using simula-
tors, physics models, or style transfer techniques like Cy-
cleGAN. However, augmentation affects the performance
of different detectors in different ways. To aid selection,
this paper makes a comparative analysis between different
object detectors in terms of accuracy, speed, and behaviour
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against augmentation.

2.2. Synthetic Weather Generation

Numerous approaches have been proposed to generate syn-
thetic adverse weather images. Simple approaches have
utilised open-source frameworks like OpenGL (Praveen
et al., 2017), and image augmentation libraries including
(Fursa et al., 2021), however, they lack visual realism. More
sophisticated methods were proposed to generate more real-
istic adverse weather images. They harness physics models
to model the dynamics of raindrops (Creus & Patow, 2013),
as well as, the behaviour of the light going through them
(Bernard et al., 2013). Despite their improved realism, such
models demand in-depth knowledge of many controlling
parameters, which, in turn, are empirically determined.

Due to the difficulty in generating synthetic data using sim-
ple augmentations and physics engines (low realism, high
number of free parameters), the autonomous driving re-
search has seen an increase in the use of Generative adver-
sarial networks (GANs) and its variants to address the issue
of data scarcity in adverse weather conditions.

The first to explore this avenue for autonomous driving
was the work of (Porav et al., 2018), which generates new
images with snow and various light conditions for the pur-
pose of improving feature matching. Other applications
focus on improving vehicle detection during nighttime (Lin
et al., 2020), object detection and semantic segmentation
(Ostankovich et al., 2020).

Other articles have used CycleGAN in the context of au-
tonomous driving tasks (Porav et al., 2020; Uřičář et al.,
2019). Musat, et al. (Mus, at et al., 2021) resembles our
work, using CycleGAN to create fake adverse conditions for
road-going AVs in general rather than racing AVs. While the
augmentations demonstrated an improvement in perception
performance in adverse weather, only one detector was used,
and no consideration was given to how different detectors
may perform when augmented training data is used, or their
suitability for real-time use on-board a vehicle.

2.3. Adverse Weather in Autonomous Racing

Adverse weather affects both the vehicle dynamics (due to,
e.g., ice, water puddles or soil on the road surface) and the
perception stack of the autonomous vehicle (due to both
detection occlusions and changes in the road surface). Dif-
ferent methods have been proposed to address the problem
of adverse weather from a perception point of view. (Zadok
et al., 2019) who improved an end-to-end model by tackling
weather appearance with the use of the existing Airsim sim-
ulator (Shah et al., 2017) to generate various time-of-day
appearances. The method is scalable, however, it generates
data only in daytime, and the generated images are not re-

(a) Real sunny weather (b) Real night

(c) Real droplet

Figure 1. Real datasets

alistic, thus the data may still be susceptible to differences
between simulation and real world. Although such models
might perform well on simulation images, they may fail
on images coming from real-world unconstrained environ-
ments. Fursa, et al. (Fursa et al., 2021) employed existing
simple open-source augmentation libraries to generate ad-
verse weather datasets, but likewise potentially suffers from
similar issues. Other methods including (Porav et al., 2020;
Uricar et al., 2019) used GANs to improve tasks downstream
from perception in urban and rural autonomous driving. To
the best of our knowledge, this study represents the first
attempt to harness CycleGAN-based weather appearance
transfer to generate realistic datasets for multiple adverse
weather conditions, in order to improve object detection in
real adverse conditions in the context of autonomous racing.

3. Data
3.1. Real-world Dataset

For the object detection task, we used three real datasets of
various conditions (shown in Figure 1) that were captured
and annotated from an autonomous racing vehicle’s vision
sensor. The first dataset consists of more than 10, 125 cones
captured in sunny conditions; the second (1, 548 cones) is
captured under low light conditions after sunset; the final
dataset (1, 197 cones) was captured in conditions where
adherent droplets on lens completely occlude and distort
some of the cones.

We used the first dataset to train and test the five object
detectors (70% training, 30% testing), and kept the last two
datasets to test the detectors against out-of-sample adverse
illumination and rainy conditions. We exclusively focus on
two object classes: blue and yellow cones.
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3.2. Synthetic Dataset

Since obtaining data with ground truth in adverse conditions
is a time- and effort-intensive task, we employ a CycleGAN
architecture (Zhu et al., 2017) (Figure 2) to generate syn-
thetic night and rainy (droplet) conditions with the datasets
that we already have. A CycleGAN is an image-to-image
translation model that learns to map images from domain
A to domain B while preserving the structure of the image.
It is a variant of the original GAN model, one in which
two generators are trained simultaneously (one to learn the
mapping from A → B and the other from B → A), while
enforcing a cycle-consistency (Zhu et al., 2017).

Cycle-consistency is enforced by training each GAN on
the output of the other: the second generator receives as
input the output of the first generator (image in domain
B) and is trained to reconstruct the original image (im-
age in domain A), by applying a reconstruction loss be-
tween the real image in domain A and its reconstruction
GBA(GAB(A)) = GBA(B̂) = Ã ≈ A. Similarly, the first
generator receives as input the output of the second gener-
ator (image in domain A), and is trained to reconstruct the
original image (image in domain B), by applying a recon-
struction loss between the real image in domain B and its
reconstruction GAB(GBA(B)) = GAB(Â) = B̃ ≈ B.

In order to generate synthesised images that contain night or
droplets conditions, we trained off-the-shelf CycleGAN im-
plementation (Zhu et al., 2017) on two (non-racing) datasets
from a mixture of resources. The first CycleGAN was
trained on frames from a YouTube video captured at night, in
London’s streets (Stevenson, 2019) while the second Cycle-
GAN was trained on in-house acquired images that contain
droplets, both were trained at a resolution of 512 × 512.
Then, we used them to transfer the night or droplet styles
to the sunny images, ending up with 911 ‘fake’ night im-
ages and 800 ‘fake’ droplet images, both having the same
ground truth labels as the original sunny images. Each of
these cases are visualised in Figure 3. Since these fake con-
ditions are meant for training the detectors, we split them

Figure 2. CycleGAN architecture

(a) Real sunny (original image)

(b) Sample used to train Cycle-
GAN to generate night

(c) Sample used to train Cycle-
GAN to generate droplets

(d) Generated night (e) Generated droplets

Figure 3. a) An original image in sunny weather, which is the
input of the CycleGAN. b, c) Examples of images used to train
the CycleGAN to generate night and droplet conditions. d, e) the
generated images based on the input image (a) with the style of
the training images (b) and (c), respectively.

into 70% training set (637 fake night and 560 fake droplet
cone images) and 30% validation set (274 fake night and
240 fake droplet cone images). We used the training set to
train the detectors and the validation set to measure their
performance while training. Training the detectors with
fake adverse conditions then testing them on real adverse
conditions allows us to verify that fake generated images
are a good proxy for real adverse conditions images.

3.3. Qualitative Analysis of the Generated Datasets

FID measure is the 2-Wasserstein distance (Olkin &
Pukelsheim, 1982) between two multidimensional Gaus-
sian distributions in the feature space: N (µs,Σs) the
distribution of some neural network features of the syn-
thesized images generated by the GAN and N (µr,Σr)
the distribution of the same neural network features from
the real images used to train the GAN. Mathematically,
FID = ||µr−µs||22+trace(Σr+Σs−2(ΣrΣs)

1/2) (Olkin
& Pukelsheim, 1982).
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FID measure is 83.56 and 138.39 for night and droplet con-
ditions, respectively. The lower the value of FID measure,
the closer the distribution of the generated dataset to the that
for the real dataset, thus, the more similar is the generated
dataset to the real dataset. Therefore, the results suggest
that our artificially generated night is more similar to a real
night than our generated droplet images are to real images
with droplets (Figure 3).

4. Object Detectors
We decided to test our concept on five state-of-the-art object
detection models, not only to validate our concept, but also
to run a comparative analysis between these detectors and
identify the optimal one, which is crucial information for
autonomous racing research. The following five object de-
tectors were chosen due to their high speed, high accuracy,
or because they can be efficiently deployed for autonomous
driving applications,

YOLOv3-tiny has fewer convolution layers than YOLOv3
(Redmon & Farhadi, 2018), and as a result is claimed to
be the fastest detection model (Yi et al., 2019), making it
ideal for high-speed applications like autonomous racing.
Counterintuitively, this high speed does not significantly
compromise accuracy for our problem which only requires
two classes (blue and yellow cones).

Scaled YOLOv4 (Wang et al., 2021) scales the resolution,
width, and depth (number of layers) of the original YOLOv4
(Bochkovskiy et al., 2020), making it more efficient and ro-
bust. Furthermore, their authors claim it delivers the highest
accuracy on the Microsoft COCO (Common Objects In
Context) dataset (Lin et al., 2015). A modified, effective
and real-time version of YOLOv4 was implemented in (Cai
et al., 2021) for object detection in autonomous driving.

YOLOv5s (Jocher et al., 2020) is the small version of
YOLOv5. It differs from YOLOv4 by being computation-
ally more efficient in terms of storage space and training
time. In terms of accuracy and inference speed, however,
there is no quantitative evidence on which is better. Conse-
quently, YOLOv5s was chosen to be compared with other
detectors in our autonomous racing domain. (Gu et al.,
2021) adopted YOLOv5 medium for real-time detection in
autonomous driving, their system achieved a balance be-
tween accuracy and latency as it scored the second place
at the Streaming Perception Challenge (Workshop on Au-
tonomous Driving at CVPR 2021), while running in real-
time. Additionally, (Benjumea et al., 2021) implemented
a modified version of YOLOv5 called YOLO-Z to detect
small objects in the context of autonomous racing.

Faster-RCNN (Ren et al., 2015) is a well-known Region
Proposal Network (RPN)-based object detection paradigm.
The model was initially proposed with a VGG (Simonyan

& Zisserman, 2014) backbone; here we used a Feature Pyra-
mid Network (FPN) (Lin et al., 2016) backbone because of
its superior performance (Wu et al., 2019). Faster-RCNN
was extended to stereo inputs in (Li et al., 2019) to build
a 3D object detector for autonomous cars that achieved
state-of-the-art results.

EfficientDet (Tan et al., 2020) applies weighted bi-
directional FPN and compound scaling to the EfficientNet
classifier (Tan & Le, 2019), resulting in a highly compu-
tationally efficient detector. Given the principal goal of
detecting cones in real-time, we selected EfficientDet-D0
which is the lightest and most efficient among the 9 Effi-
cientDet models.

5. Experimental Results
5.1. Experimental Setup

The general approach of the experiments is to train the five
detectors on sunny weather to then test them on real adverse
conditions. After that, we retrain them on fake adverse
conditions then test them again on real adverse conditions.
The goal is to record the difference in performance between
models trained on (real) sunny condition data versus models
trained on (fake) adverse conditions. If the latter proved to
be better, then we would have demonstrated that our (syn-
thesised) datasets are an effective proxy for (real) adverse
condition data in the domain of autonomous racing. Further-
more, experiments aim to analysis the response of detectors
to augmentation and identify the detector with best response.
Additionally, the inference time of detectors is recorded to
identify their suitability to real-time operation.

Our experiments were divided into four stages. Initially, all
five detectors were trained on sunny weather data (Table 1,
first row). This set the baseline against which subsequent
models were compared. Next, the detectors were trained
on Sunny and Fake Night (Table 1, second row). Third,
they were trained on Sunny and Fake Droplet data (third
row). Finally, they were trained on Sunny, Fake Night
and Fake Droplet data (fourth row). In each stage the
trained detectors were tested on Sunny, Real Night, and
Real Droplet data (Section 3.1). The results are reported in
Table 1, while a performance comparison across stages is
shown in Figure 5.

In all our experiments the training was conducted on a GPU
machine equipped with 4 Nvidia GTX 1080 GPUs with
12GB VRAM each. To perform fair comparisons between
all five object detectors we fixed the value of several hy-
perparameters, including number of epochs (to 300), batch
size (to 64), and input image size (to 512 × 512 pixels).
For testing, we used an in-car PC mounted on a racing car
equipped with a single Nvidia GTX 1050 TI GPU, with a
batch size of 1 and an image size of 512× 512 pixels.
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Performance was measured using the standard mean Aver-
age Precision (mAP), with an Intersection over Union (IoU)
threshold of 0.5 (Table 1). In addition, we measured compu-
tational efficiency for each detector by recording its floating
point operations per second (FLOPS) and inference time in
frames per second (fps) (last two rows of Table 1).

5.2. Impact of Synthetic Adverse Conditions

Detector performance (mAP) over the 60 experiments dis-
cussed in Section 5.1 is reported in Table 1. Figure 5 shows
the difference in object detection performance of the models

(a) Before training on fake night and fake droplet (mAP=0.22)

(b) After training on fake night and fake droplet (mAP=0.74)

Figure 4. Impact of augmentation on night detections using
YOLOv5

trained on synthetic adverse conditions dataset against that
of their baseline versions (trained only on Sunny weather).
Figure 5a compares the models trained upon Fake Night to
their corresponding baseline (1st and 2nd rows in Table 1).
It is clear that, after training the detectors on Fake Night,
their performance on Real Night improves by an average of
32 percentage points (pp). Perhaps surprisingly, training on
Fake Night not only improved the detectors’ performance
on real night, but also on Real Droplet by an average of
4.5 pp. A possible reason for this is that by introducing
Fake Night in the training dataset, the models were trained
to infer more diverse images that are out-of-sample of the
original Sunny Weather training data.

Figure 5b compares the models trained upon Fake Droplet
to their respective baseline (1st and 3rd rows in Table 1).
When trained on Fake Droplet, YOLOv3, YOLOV5 and
Faster-RCNN show improvements on Real Droplet, and just
like the previous stage, they also show improvements on
the other real adverse condition (Real Night). Counterintu-
itively, training on Fake Droplets slightly reduced perfor-
mance in Real Droplet conditions and improved detections
in Real Night using YOLOv4 and EfficientDet.

Finally, Figure 5c shows the difference between The ‘mono-
lithic’ versions of the models (those trained on Sunny, Fake
Night and Fake Droplet) and their related baseline (1st and
4th rows in Table 1). The ‘monolithic’ versions exhibit
slightly better performance on real adverse conditions than
those trained on a single fake adverse condition. When
tested on Real Night, the monolithic models (excluding Ef-
ficientDet) show a mean performance improvement of 42.7

Data splits Detection model mAP
Training set Test set YOLOv3 SYOLOv4 YOLOv5 FRCNN EfficientDet

Sunny
Sunny 0.89 0.93 0.95 0.97 0.45
Real Night 0.43 0.21 0.22 0.23 0.24
Real Droplet 0.53 0.54 0.53 0.57 0.43

Sunny + Fake Night
Sunny 0.89 0.89 0.97 0.96 0.47
Real Night 0.62 0.39 0.73 0.67 0.55
Real Droplet 0.57 0.55 0.58 0.60 0.53

Sunny + Fake Droplet
Sunny 0.89 0.88 0.96 0.95 0.36
Real Night 0.57 0.33 0.25 0.30 0.26
Real Droplet 0.54 0.51 0.55 0.62 0.36

Sunny + Fake Night + Fake Droplet
Sunny 0.89 0.86 0.97 0.97 0.37
Real Night 0.68 0.66 0.74 0.71 0.25
Real Droplet 0.58 0.55 0.61 0.60 0.37

Speed (fps) ↑ 74.63 8.77 13.68 3.01 26.53
FLOPS (B) ↓ 12.9 109 16.4 180 2.5

Table 1. Detailed comparative analysis of mAP for all five object detectors (tested on Sunny, Real Night, and Real Droplet) when trained
on four different training sets. The aim of that is to show the difference of detectors’ performance on real adverse conditions when trained
on fake adverse condition against that when trained on sunny condition only. mAP is measured at a standard IoU threshold of 0.5. The
plus (+) shows the concatenation of real and augmented data for training. The best model of each training-testing stage (each row) is
bolded. Frame rate (in fps) and FLOPS (in billions) comparison of all five object detectors, tested using an AV’s on-board PC with GTX
1050 TI.
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pp, while the models trained only on Fake Night show a
mean increase of 32.7 pp. In Real Droplet conditions, the
monolithic models show a mean increase of 4.4 pp, while
the models trained only on Fake Droplet show a slight degra-
dation of 1.2 pp. Figure 4 show the qualitative results of
YOLOv5 night detections before and after being trained on
synthetic night.

The average improvements on all conditions for night is
higher than that for droplets. This is due to the baseline
models having lower performance on Fake Night than on
Fake Droplets, so there was more room for improvement
in the former. Furthermore, this agrees with the fact that
the synthetic Fake Night data is more visually similar to
the Real Night data than the Fake Droplet data is to Real
Droplet data (as the Fake Night dataset has a lower FID than
the Fake Droplet data (Section 3.3)). This intuitively might
be due to the fact that night images, by nature, are captured
with lower reflective light than images taken during day-
time, resulting in images that have lower number of colours
and details than images captured during the day. This, in
turn, makes it easier for generative models like CycleGAN
to generate them because, again, they have fewer colours
and details than day-time images.

5.3. Detector Behaviour Using Synthetic Adverse
Conditions

When models are trained on augmented (Fake) datasets,
their performance difference on Real Sunny varies. the
performance of YOLOv3 and YOLOV5 experienced
marginal (negligible) improvement or degradation. How-
ever, ScaledYOLOv4 and EfficientDet performance was
slightly degraded.

The different detection models use a varied architecture for
the neck structure (which is placed between the head and
backbone to aggregate as much information extracted by the
backbone as possible before it is fed to the head) - YOLOv3
and YOLOV5 use a Path Aggregation Network (PANet)
(Liu et al., 2018) as a neck and they exhibit a slight perfor-
mance enhancement, while ScaledYOLOv4, FRCNN, and
EfficientDet use FPN (Lin et al., 2016) and they generally
show a degradation of performance. The results suggest
that detectors with an FPN neck are more susceptible to
augmentations degrading good weather performance than
those using PANet.

Among the five detectors, YOLOv5 is the most robust in
all weather conditions: trained on augmented data, it re-
ported an improvement of 1.3, 52.1, and 7.6 pp on real
sunny, real night, and real droplet respectively. On the other
hand, EfficientDet performed the worst after augmentations,
exhibiting a performance degradation of -8.4 and -5.5 pp
for Sunny and Real Droplet and an improvement of +0.5 on
Real Night.

5.4. Object Detectors’ Performance

Looking at Table 1, it is observed that, in the absence of
adverse weather training data (i.e., when only the sunny
weather training dataset is available), Faster-RCNN is the
most accurate model for sunny and rainy weather. However,
YOLOv3-tiny is arguably the optimal model for this appli-
cation, as object detection performance is only marginally
reduced from that of Faster-RCNN in sunny and rainy con-
ditions, but exhibits double the mAP in night-time tests -
while simultaneously being 25 times faster and 18 times
more computationally efficient than Faster-RCNN.

In contrast, when synthetic adverse condition training data
is available, YOLOv5 and FRCNN appeared to be the best
choices in terms of accuracy and robustness in all weather
conditions. After training on synthetic adverse conditions
(fake night and fake droplet), they scored the highest mAP
across the board when tested on sunny weather, real night,
and real droplet. YOLOv5 is also capable of achieving these
results while running at a high frame rate of almost 14 fps.

In terms of raw computational efficiency alone (last row of
Table 1), EfficientDet is the best model among the five de-
tectors. It has the lowest number of floating point operations
per second, which makes it ideal for low computational ca-
pacity hardware. Although EfficientDet has (5 times) lower
FLOPS than YOLOv3, the latter is (2.8 times) faster than
the former. This is because the term FLOPS describes the
number of operations per second not the total number of
operations. In other words, EfficientDet might have more
operations in total than YOLOv3, but it divides and executes
them over a longer time span (thus slower), ending up with
a small number of operations per second. Having a lower
FLOPs means the model is hardware-friendly and can be
installed on relatively light processors including the pop-
ular NVIDIA Jetson. However, EfficientDet performance
is decreased in almost all weather conditions with the use
of augmented training data - suggesting it is a poor choice
when using augmented training data in adverse conditions.

Furthermore, Table 1 in terms of inference speed, YOLOv3
is the fastest model by a clear margin - triple the speed of Ef-
ficientDet, and an order of magnitude faster than SYOLOv4
and Faster-RCNN. Interestingly, the number of frames it can
process per second is more than the summation of frames
processed by all the other models combined. While running
at this high speed, YOLOv3 achieved a similar performance
to that of YOLOv5. Therefore, in case a lower powered
processor hardware is to be used or a high frame rate is crit-
ical, YOLOv3 is the optimal choice. It is worth mentioning
that the frame rates in Table 1 were measured while running
the detectors on the AV racing PC mentioned in section 5.1
which (at the time of writing) is 4 years old. State-of-the-art
on-board hardware will further improve the performance of
all detectors.
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Figure 5. Dashed bars show the baseline performance (mAP) of 5 models trained on Sunny and tested on Sunny, Real Night, and Real
Droplet (1st row of Table 1). The coloured continuous bars and coloured numbers show the improvement (+ve value) or degradation (-ve
value) of performance caused by retraining the models on a) Sunny+Fake Night, b) Sunny+Fake Droplet, c) Sunny+Fake Night+Fake
Droplet, (2nd, 3rd, and 4th rows of Table 1).

6. Conclusions and Future Work
CycleGAN-based style transfer can be efficiently used to
generate synthetic (fake) adverse condition data that can, in
turn, be used to improve the performance of object detection
models for autonomous racing in real adverse conditions. In
this paper, training on synthetic data has improved the per-
formance of four out of five state-of-the-art detection models
by 42.7 and 4.4 percentage points when tested on real night
and real droplet frames, respectively. Behaviour of detec-
tors against augmentations varies; out of the five detectors,
EfficientDet was the worst while YOLOv5 has emerged
as arguably the optimal one as it managed to achieve high
mAP of 97%, 74% and 61% for sunny, night and droplet
respectively - while being very efficient, making it ideal for
autonomous racing applications. It is noted that the models
with PANet neck had positive response to augmentations
than those with FPN neck. In applications where speed is
of the essence, YOLOv3 is recommended as it stands as the
fastest detection model.

An interesting area for further exploration is the influence of
the various neck structures and feature extraction backbones
employed in different object detectors, in order to truly
understand and optimise the performance of object detection
models for applications requiring the use of augmented
training data.

Results suggest that a carefully selected combination of
synthetic weather training data, and an appropriate object
detector, can effect a significant improvement in object de-
tection accuracy in adverse weather. Although further work
in this area is required, it is believed that these findings will
be applicable to on-road autonomous driving scenarios.

All the analysed detectors are CNN-based. However, in
future, Transformer-based detectors might also be analysed
and compared.
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