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Abstract

This paper studies the safe reinforcement learn-
ing (RL) problem with sparse indicator signals
for constraint violations. We propose a model-
based approach to enable RL agents to effectively
explore the environment with unknown system
dynamics and environment constraints given a
significantly small number of violation budgets.
We employ the neural network ensemble model to
estimate the prediction uncertainty and use model
predictive control as the basic control framework.
‘We propose the robust cross-entropy method to op-
timize the control sequence considering the model
uncertainty over the constraints. We evaluate our
methods in the Safety Gym environment. The
results show that our approach learns to complete
the tasks with better safety performance than base-
lines and achieves several orders of magnitude
better sample efficiency when compared with con-
strained model-free RL approaches.

1. Introduction

Reinforcement learning (RL) has achieved great success in
a wide range of applications. By setting a high-level reward
function, an RL agent is able to learn a policy to maximize
the reward signal received from the environment through
trial and error. However, in the course of learning, it is
usually hard to prevent the agent from getting into high-risk
states which may lead to catastrophic results, especially for
safety-critical applications. For example, if an RL algorithm
is deployed on a real robot arm, it might hit fragile objects
and surrounding people, which may break valuable prop-
erty or cause injury. Therefore, it is important to develop
constrained or safe reinforcement learning algorithms for
real-world applications, which allow them to complete tasks
while satisfying certain safety constraints.

Though some research has proposed to achieve constrained
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reinforcement learning with prior knowledge (Dalal et al.,
2018; Koller et al., 2018), the assumptions may not hold for
all applications. Therefore, we consider the most general
settings of constrained RL — how can we enforce safety
constraints for an RL agent without the knowledge of the
system dynamics and an explicit expression of the constraint
function? One example problem that falls under this cate-
gory is the Goal task setting in the Safety Gym simulation
environment (Ray et al., 2019), where a robot needs to navi-
gate to the goal while avoiding all of the hazard areas. The
dynamics model of the environment is unknown, and the
robot only receives indicator signals when violating con-
straints. The observations of the robot are sensory data so it
is hard to analytically express the mapping from observation
space to the constraint violation.

The challenges of solving the above problem are three-
fold: First, pure model-free, constrained RL algorithms
(such as Lagrangian-based methods (Stooke et al., 2020)
and projection-based optimization methods (Achiam et al.,
2017)) are not sample efficient. They need to constantly
violate safety constraints while collecting a large number
of unsafe data to learn the policy, and the final policy can
hardly guarantee constraint satisfaction, which restrict the
application in safety-critical environments. Second, the
task objective and the safety objective of an RL agent may
contradict each other, which may corrupt the policy opti-
mization procedure for methods that simply transform the
original reward optimization criteria to the combination of
reward and constraint violation cost (such as risk-sensitive
or uncertainty-aware methods (Geibel & Wysotzki, 2005;
Gaskett, 2003)). As Fig. 1 (a) shows, the constraint viola-
tion signals give an opposite direction of the reward signal,
which could cause oscillation behavior of the robot close to
the dangerous flame area. Finally, the black-box constraint
function and unknown environment dynamics model make
the problem hard to optimize, especially for tasks with a
high-dimensional observation space (Ray et al., 2019). Most
existing model-based constrained RL approaches either as-
sume a known prior dynamics model of the system or as-
sume a known structure of the constraint function (which
could be expressed by an analytical formula or a finite num-
ber of unsafe sets (Berkenkamp et al., 2017; Koller et al.,
2018; Pham et al., 2018)).
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Figure 1. (a): The reward signal and safety signal may contradict
to each other; (b): The trajectory sampling method for uncertainty-
aware dynamics models.

The contributions of this paper are twofold: 1) We present a
simple yet powerful constrained model-based reinforcement
learning algorithm with continuous state and action spaces
that can achieve near-optimal task performance with near-
zero constraint violation rates. We formulate the problem
under the constrained Markov Decision Processes frame-
work and without additional assumptions regarding the sys-
tem dynamics and constraint functions, which should be
both learned from collected data with limited unsafe sam-
ples and sparse constraint violation indicator signals. 2) We
propose a robust cross-entropy (RCE) optimization method
that works with an uncertainty-aware dynamics model to
deal with the dynamics prediction error that may lead to
unsafe behaviors. We show that our RCE method is better
than popular model-free and model-based baselines in terms
of both sample efficiency and performance.

2. Related Work

Constrained reinforcement learning aims to learn policies
that maximize the expected task reward while satisfying
safety constraints (Garcia & Fernandez, 2015). One popular
method to solve constrained RL problems is to transform
the single reward optimization criteria to a combination
of reward and constraint violation signals, such as using
the notion of risk or uncertainty as one of the optimization
loss terms (Gaskett, 2003). However, for some applica-
tions, it is better to separate the safety and performance
specifications rather than combine them into a value and
then optimize, because the reward signal and safety signal
may conflict with each other, which could cause unstable
performance (Ray et al., 2019) as we show in Fig. 1 (a).
Furthermore, balancing the objective function between the
performance metric and the safety metric is a difficult and
domain-specific task (Garcia & Fernandez, 2015).

Recently, constrained optimization algorithms have attracted
much attention. Achiam et al. (Achiam et al., 2017) pro-
posed the Constrained Policy Optimization (CPO) algorithm
based on the trust region method, which can be applied to
high-dimensional tasks. However, the errors of gradient and
Hessian matrix estimation may lead to poor performance
on constraint satisfaction in practice (Wen & Topcu, 2018).

On the other hand, Lagrangian-based methods aim to trans-
form the original constrained optimization problem to an
unconstrained form by adding the Lagrangian multiplier,
which achieves relatively better performance than CPO in
a recent empirical comparison in the Safety Gym environ-
ment (Ray et al., 2019). The Lagrangian multiplier can be
regarded as a dynamic weight coefficient that balances the
weight between the performance and safety metrics, and
can be optimized via gradient descend together with the
policy parameters. Nevertheless, a target constraint viola-
tion rate must be set in advance, which is not flexible to
transfer a trained policy to different tasks. We use CPO and
a Lagrangian-based method as part of our baselines.

To achieve safety constraint satisfaction, several model-
based approaches have been proposed. Pham et al. (Pham
et al., 2018) and Dalal et al. (Dalal et al., 2018) combined
unconstrained model-free methods with model-based safety
checks to guarantee constraint satisfaction for the output.
Similar action projection ideas are also used in some Lya-
punov function-based methods (Chow et al., 2019). To
guarantee safe exploration of the environment, Gaussian
Processes (GPs) are usually used to model the dynamics
because of their ability to estimate uncertainty (Berkenkamp
et al., 2017; Koller et al., 2018). However, these methods
either assume prior knowledge of the environment such as a
prior dynamics model, or require a known constraint func-
tion structure that is analytically expressed or defined by a
set of states. Furthermore, although GP-based approaches
perform well in low-dimensional simple tasks, they do not
scale well as the data dimension and amount increases, and
struggle to represent complicated and discontinuous dynam-
ics models (Chua et al., 2018).

3. Preliminaries
3.1. Constrained Markov Decision Process

We investigate the constrained RL problem in the con-
strained Markov decision process (CMDP) framework,
which is defined by a tuple (S, A, f,r,¢,v), where S is
the state space, A is the action space, f : S x A+ Sis
a deterministic state transition function, r : S — R is the
reward function, and ¢ : S — {0,1} is an indicator cost
function, where 0 means safe and 1 represents constraint
violation, and -y + [0, 1] is the discount factor.

We assume the dynamics f and the cost function ¢ are
both unknown, and should be learned from data. The
policy 7 : § +— A is a mapping from the state space
to the action space. Let J.(m) denote the expected re-
turn of policy m w.r.t the reward function r and J.(7) de-
note the expected return of policy 7 w.r.t the cost function
c. We have J,(m) = ETww[ZthoT(sHl)]’ Jo(m) =

IETNW[ZtT:O ¢(s¢+1)], where T is the time horizon, and
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T = {s0, ag, $1,a1, ...} is the trajectory collected by .

Some model-free constrained RL methods, such as
Lagrangian-based methods (Stooke et al., 2020), aim to
maximize the cumulative reward while limiting the cost
incurred from constraint violations to a target constraint
violation value d € (0,400). The problem can then be
expressed as

" = argmax J.(m), s.t.
T

where 7* is the optimal policy. Setting d = 0 represents
perfect constraint satisfaction, which is usually desired in
many safety-critical applications.

3.2. Cross-Entropy Method for Optimization

The cross-entropy method (CEM) is a sampling-based
stochastic optimization approach, which has been used in
a series of reinforcement learning problems recently (Chua
etal., 2018). In CEM, we assume the n dimensional solution
X € R" is sampled from a distribution that is parameterized
by ©. The distribution is assumed to be a n-dimensional fac-
torized multivariate Gaussian, which is one of the most com-
mon choices in the RL literature. Then we have X ~ N (©),
where © = (u,X). p is an n dimensional vector, and X
is an n dimensional diagonal covariance matrix. The basic
idea is to sample solutions iteratively from a distribution that
is close to previous samples which have resulted in high re-
wards. The iteration’s stopping criterion is often determined
by a predefined maximum iteration number and a threshold
on the covariance. For more details on CEM methods and
their applications, refer to (Botev et al., 2013).

4. Approach
4.1. Model Learning

As we introduced in section 3.1, the dynamics model (de-
terministic state transition function) f (s, a;) and the cost
model (constraint violation indicator function) ¢(s¢1) are
both unknown. We need to infer them from collected data.
For model-based RL, the choice of dynamics model is cru-
cial, as even a small prediction error may influence the per-
formance of the controller significantly (Chua et al., 2018).
Therefore, using an uncertainty-aware dynamics prediction
model is necessary, especially in safety-critical scenarios.

As a particular instance of this paper, we adopt a neural
network ensemble model to learn the dynamics and esti-
mate the epistemic uncertainty (subjective uncertainty due
to a lack of data) of the input data, which is similar to the
ensemble model that was proposed by Chua et. al (Chua
et al., 2018). We choose the ensemble model because of
its scalability, implementation simplicity, and reasonable
uncertainty estimation in complex environments. It could be

replaced by any other uncertainty-aware prediction models
in our framework.

Denote B as the number of ensemble models. Denote feb
as the b-th neural network (b € {1, 2, ..., B}) parameterized
by 6. Given state s;, action ay, next state s;11 tuples of
data D, where ¢ represents the time, we train each neural
network by minimizing the mean square error (MSE) loss
as 1055(9) = E(St7at75t+l)€Db [| |St+1 - feb (8757 at) | |] , where
Dy is a subset of the whole data D to prevent each model
from overfitting. After we train all base models, we define
the predictive distribution as a multivariate Gaussian with
mean ji = & Zszl fo, and variance ¥ = M,
where 3 can be regarded as the epistemic uncertainty esti-
mation.

Since the unknown cost model ¢(s¢41) is an indicator func-
tion of constraint violations, any classification model may
be used to approximate it. However, the unsafe data that
violate safety constraints may only make up a small por-
tion of the collected data, which induces an imbalanced
data classification problem (Sun et al., 2009; Wang et al.,
2019). For single-neural-network-based classification mod-
els, the results could be biased towards safe data, meaning
the model will still achieve high prediction accuracy overall,
even if the model falsely determines all of the input data
to be safe. Therefore, in light of robustness towards imbal-
anced data, as well as low computational burden, we adopt
a state-of-the-art gradient boosting decision tree-based en-
semble method - LightGBM (Ke et al., 2017) - as a classifier
to approximate the indicator cost function. In addition, we
separate the entirety of our data into two buffers - one for
safe data and another for unsafe data - in order to control the
maximum ratio of safe data to unsafe data used for training.
The data management tricks can reduce the bias towards
safe data as much as possible.

4.2. Model Predictive Control with Learned Dynamics
and Cost Model

We use Model Predictive Control (MPC) as the basic con-
trol framework for our constrained model-based RL ap-
proach (Okada & Taniguchi, 2020; Drews et al., 2017). The
objective of MPC is to maximize the accumulated reward
w.r.t a sequence of actions X = (ag, ..., ar), where T is
the planning horizon. After the first action is applied to
the system, new observations are received, and the same
optimization is performed again. In our CMDP setting,
additional constraints are introduced so that the original
objective becomes a constrained optimization problem. De-
note s; as the observation at time ¢. We aim to solve the
following problem:
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where -y is the discount factor, 7(s;41) is the reward func-
tion, f(s¢, a) is the dynamics model, and ¢(s;41) € {0,1}
is the indicator cost function. Both f and c are learned from
data and can be viewed as black-box functions.
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4.3. Robust Cross-Entropy Method for Planning

Algorithm 1 Robust Cross-Entropy Method for RL
Input: Initial distribution parameter © ; number of samples
N; number of elites k; initial state sg

Output: Sample X'* with the highest reward

1: while The stop criteria is not satisfied do

2:  Draw N samples from the initial distribution:
Xy, X,y oy Xy ~ N(O)

3:  Evaluate each sample X; by Eq.2 to get the estimation
of reward r(X;; s) and cost ¢(X;; so)

4:  Select the feasible set € {X;}¥ | based on the cost

estimation

5. ifQis empty then

6: Sort {X;} Y| in ascending order w.r.t the cost. Let
A} be the first k£ elements

7. else

8: Sort €2 in descending order w.r.t the reward.

9: Let Ay, be the first k& elements of Q if |Q| > &,
otherwise let Ay, be Q

10:  end if

11:  Update © by maximizing the likelihood given Ag:
© < argmaxg [[yc,, P(X;0)

12: end while

13: return: X' with highest reward in Ay

To directly solve the constrained optimization problem in
Eq. 1, we propose the robust cross-entropy method (RCE)
by using the trajectory sampling (TS) technique (Chua et al.,
2018) to estimate reward and constraint violation cost. We
define the solution X = (ag, ay, ..., ar_1) to as an action
sequence with length of planning horizon T'. Given the
initial state sg, the learned dynamics model fy, the learned
indicator constraint function c(s) € {0, 1}, we can evaluate
the accumulated reward and cost of the solution by:

S

B

1
Z Y B r 5t+1
t=0 b=1 )

c(X;s0) = Zﬂt max c(5741)

t=0

(X SQ

~

where s}, = fo, (82, a,),¥t € {0,...T — 1},¥b €
{1,...,B}, v and 3 are discounting factors, and B is the
ensemble size of the dynamics model. The reward r(s)
could either be predefined or learned together with the dy-
namics model from data (as an additional dimension of the
state). The intuition behind the TS estimation method is
shown in Fig. 1 (b), where the dots on the blue line and
the dots on the orange line represent two real trajectories,
and the ellipses represent the uncertainty of the dynamics
model prediction based on the initial observation and action
sequences. From the figure, we can see that the reward
for trajectory B should be higher than trajectory A because
choosing B will result in the goal being reached faster. How-
ever, trajectory A is preferred because a robot following
trajectory B may pass through the flames and violate the
safety constraint. Without TS, trajectory B could potentially
be predicted as a safe route because of the dynamics model
prediction error. With TS, the uncertainty estimate of our
dynamics model has a slight chance to cover the unsafe area,
so the trajectory B will be classified as unsafe. Because
TS estimates the cost of a trajectory with the worst-case
scenario among all sampled routes, it is more robust when
the dynamics model prediction is not highly accurate.

Denote the reward function as r(X) : S — R, and the prob-
ability density function as p(X’; ©). The RCE algorithm is
shown in Algorithm 1. We first select the feasible set of
solutions that satisfy the constraints based on the estimated
cost in Eq. 2. Then, we sort the solutions in the feasible
set and select the top k samples to use when calculating the
parameters of the sampling distribution for the next iteration.
If all the samples violate at least one constraint, we select
the top k samples with the lowest costs.

Algorithm 2 MPC with RCE
Input: Initial collected data D; RCE parameters P

1: while The performance is not converged do
2:  Train the dynamics f and cost model ¢ given D
3 for Time ¢ = 0 to EpisodeLength do
4: Observe state s; from the environment
5 Optimize actions by Alg. 1:
{a:}IT < RCE(P, s¢)
Apply the first action a; in {a;} to the system
Observe next state s;y1 and cost 51gnal c(St41)
8: Update data buffer:
D+ DU {s4,as,5t41,¢(5t41)}
9:  end for
10: end while

t+T

2

A similar idea is adopted in (Wen & Topcu, 2018). Our ap-
proach differs from theirs in two aspects. First, we consider
the worst-case cost and aim to minimize the maximum cost
in order to select the feasible set while they calculate the ex-
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pectation. Second, their primary application is to optimize
the policy parameters for model-free RL, while we directly
optimize the action sequence within the planning horizon in
the model-based RL setting. The entire training pipeline of
our MPC with RCE is presented in Algorithm 2.

5. Experiments

In this section, we aim to answer two questions: 1) how
sample efficient of our method than popular primal-dual
constrained optimization approaches? 2) what is the role
of RCE in the MPC framework? Since RL agents learn
by trial and error, and we assume no prior knowledge of
the environment, it is inevitable to violate the constraints in
the early stage of training. However, our goal is to reduce
the unsafe samples as much as possible and increasing the
efficiency of using the unsafe data because collecting unsafe
data could be expensive in some cases.

5.1. Simulation Environment

We evaluate our safe RL approach in the OpenAl Safety
Gym environment (Ray et al., 2019), which is shown in
Fig. 2. Each experiment setting involves a robot (red object
in Fig. 2) that must navigate a clustered environment to
accomplish a task while avoiding contact with obstacles.
When the robot enters the goal circle (green circle), the goal
location is randomly reset. A bonus of r, = 1 is given
to the robot for reaching the goal. Hazards (blue circles)
are dangerous areas to avoid. Vases (teal cube) are objects
initialized to be stationary but movable upon touching. The
agent is penalized for entering Hazards or touching Vases. If
the agent violates the safety constraint at time step ¢, it will
receive a cost ¢(s;) = 1, otherwise the cost is 0. We have
two types of robot — Point and Car, and two levels — level
2 is more difficult than level 1 task since more constraints
are presented. We name the 4 tasks as Point-Goall,
Point-Goal2, Car—-Goall and Car—-Goal?2.

(a) Point Goall Env (b) Point Goal2 Env

(c) Car Goall Env

(d) Car Goal2 Env

Figure 2. Experiment Environments

5.2. Baselines and Experiment Setting

Model-free baselines. Inspired by the official benchmark
of Safety Gym, we use 4 Lagrangian-based approaches
— TRPO-Lag, PPO-Lag, SAC-Lag, DDPG-Lag -
and a constrained optimization approach CPO (Achiam
et al., 2017) as the model-free constrained RL base-
lines. The Lagrangian baselines are augmented based on
TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017),
SAC (Haarnoja et al., 2018), DDPG (Lillicrap et al., 2015),
which we have introduced in section 2. Note that SAC and
DDPG are off-policy methods, so they should be more sam-
ple efficient. We also use two unconstrained RL methods —
TRPO and PPO - to show the performance and constraint
violations when we only optimize for the task reward.

Model-based baselines A simple way to solve Eq. 1 is to
add large penalties to the objective function for constraint
violations. So we extend two popular model-based methods
to solve the safe RL problem: CEM and random shooting,
which have successfully been applied to many model-based
RL tasks (Nagabandi et al., 2018; Chua et al., 2018). The
two model-based baseline methods will adopt the same
trajectory sampling technique and the same models as we
used in RCE. The only difference is the optimization pro-
cedure. We name the two methods as MPC-random and
MPC-CEM.

Metrics and comparison. We follow the metrics and com-
parison method in the Safety Gym paper (Ray et al., 2019).
We compare different approaches in terms of episodic accu-
mulated reward and episodic cost, which is defined as the
total constraint violation number in each episode. Method
A is better than B if A’s episodic cost is lower than B’s.
If their costs are similar, then the one with higher episodic
reward is better. We also compare the sample efficiency of
exploiting constraint violations and the cost after conver-
gence.

Training. We use the same hyper-parameters for the model-
based methods (MPC-RCE, MPC-CEM, and MPC-random)
and the same hyper-parameters for the model-free baselines
provided by the Safety Gym official benchmark (Ray et al.,
2019). For the detail about hyper-parameters used in our
experiments, please refer to the appendix 6 and code.

5.3. Comparison of Model-free Baselines

Fig. 3 shows the experiment results in the four tasks, where
the first two rows are the learning curves of reward and
constraint violation cost respectively, and the last row is the
maximum reward versus cumulative cost plot that character-
ize the efficiency of exploiting costs. The dashed line in the
second row is the target constraint violation threshold. The
figures help us to address the first question — how sample ef-
ficient of our method? Note that the horizontal axis (total
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Figure 3. Learning curves in the logarithmic scale of steps. Each column is a task. The first row figures are the reward trends, the second
row figures are the cost trends, and the last row figures are the maximum reward versus the cumulative cost. All plots are averaged among
3 random seeds. The solid line is the mean value, and the light shade represents the area within one standard deviation.

interaction steps) of all the plots are in the logarithmic
scale, since our method requires significantly fewer samples
to converge than baseline approaches. From the figure, it is
apparent that our MPC-RCE method learns the underlying
constraint function quickly to avoid unsafe behaviors during
the exploration and achieves the lowest constraint violation
rate throughout the training. During the training, the reward
begins increasing almost one magnitude episodes earlier
for our method and the number of constraint violations re-
mains low. After training, our method can achieve nearly
zero constraint violations, while baseline methods strug-
gle to meet the target constraint threshold. In addition, our
method maintains high task rewards, while we could observe
a clear reward decreasing of the baseline Lagrangian-based
approaches after certain steps along with the cost, which is
caused by the oscillation behavior and instability of the dual
variables (see Appendix for more details).

The last row’s figures show the effectiveness of utilizing
each cost — how much task rewards we could obtain given a
budget of constraint violations. The curves that are close to
the upper left would be better because they require less un-
safe samples to achieve high rewards. Though the off-policy
baselines (SAC-Lag, DDPG-Lag) are generally more sam-
ple efficient regarding cumulative costs than on-policy base-
lines, our method still outperforms them with large margin
among all tasks. For simple tasks, such as Point-Goall
and Car-Goall, our method use 1 or 2 magnitude less

unsafe samples to achieve the same task rewards as the best
baseline approach, while the margin is larger for more chal-
lenging Point-Goal2 and Car—Goal?2 tasks, where
MPC-RCE could reach the same performance with at least
100 times fewer unsafe samples. As far as we are aware, our
method can achieve the best constraint satisfaction perfor-
mance in these Safety Gym tasks without prior knowledge
of them. It is more clear in the last row figures, the cost it
takes to reach high rewards is much lower for our method.

Point-Goall Point-Goal2
40
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Figure 4. Comparison of constraint violation of model-free meth-
ods after convergence

The constraint violation after convergence for model-free
baseline comparison is demonstrated in Fig. 4. From the
figure, we can see that our approach realizes the lowest
cost among all the baselines. Besides, it is clear that the
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maximum of converged cost of our approach is below the
minimum cost of all the baselines. In addition, the variance
is smaller for RCE, which indicates that our method is more
robust than baselines.

5.4. Comparison of Model-based Baselines

In order to address the second question — what is the role of
RCE in the algorithm, we compare RCE with CEM and ran-
dom shooting under the same control framework. Note that
all the other training variables, such as hyper-parameters,
are the same as RCE for the model-based baselines. The
only difference is the optimizer, where we use a robust
estimation mechanism to estimate the risk of rollout tra-
jectories. Table 1 demonstrates the constraint satisfaction
performance during the training procedure. We compare
the total number of constraint violations for the first 10,000
steps of training. From the table, we can see our approach
achieves much lower cost than baselines, which means that
the robust estimation scheme is the crucial factor to ensure
safety — MPC-RCE agent requires the minimum number of
samples to converge and is able to explore the environment
in a safer way.

Table 1. Comparison of total constraint violation number for the
first 10000 training steps.

Method

Task MPC-RCE | MPC-CEM | MPC-random
Point Goal 1 16.00 184.33 169.0
Point Goal 2 231.00 746.00 600.67
Car Goal 1 7.00 103.67 139.33
Car Goal 2 96.00 578.00 509.33

Fig. 5 demonstrates the box plot of constraint violation
when the training is converged. Here, the convergence is
denoted by the last 10% of the total training epochs. The
box plot — also named whisker plot — displays the minimum,
first quartile, median, third quartile, and maximum of the
cost after convergence. From the figure, we can see that
our approach realizes the lowest cost among all baselines
(see appendix for the complementary results for model-free
baselines). Interestingly, we could observe that even the
third quartile of converged cost of our approach is below
the minimum cost of the baselines, which indicates that the
robust planning could improve safety with a large margin.

As we have shown in the results, RCE can achieve better
constraint satisfaction performance than CEM, although
they use the same dynamics model, constraint model, and
hyper-parameters. We provide an intuition about why RCE
is better — CEM is more likely to converge to unsafe action
sequences than RCE when the agent is close to the danger-
ous areas. Denote the elite sample threshold as k. Consider
the ¢-th iteration during the optimization procedure. Sup-

. . k
pose that in the sampled action sequences, only ¢ < 35

samples are safe, and the remaining samples will cause con-
straint violations, which is likely to happen when the agent
is close to unsafe areas. For RCE method, the feasible set
selection phase will help to discard all the unsafe samples
in the elites, so that only the remaining safe samples will
be used to update the sampling distribution at the (¢ + 1)-th
iteration. However, for the CEM method that simply adds
cost penalties to the reward for unsafe samples, all the k
samples will be used to calculate the mean. Therefore, the
mean of the (¢ + 1)-th sampling distribution will be biased
towards unsafe samples, which causes more unsafe samples
in the (¢ + 1)-th iteration.

Point-Goall Point-Goal2

MPC-RCE(ours) MPC-CEM

Car-Goall

MPC-RCE(ours) MPC-CEM

Car-Goal2
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Figure 5. Comparison of constraint violation of model-based meth-
ods after convergence

6. Conclusion

We introduce a simple yet effective constrained model-based
RL algorithm without any prior assumptions on the system
dynamics or the constraint function. We propose the robust
cross-entropy method (RCE) to optimize the action under
the MPC framework in light of the model uncertainty and un-
derlying constraints. Our method is evaluated in the Safety
Gym environment and achieves better constraint satisfaction
while maintaining high task performance compared with
other constrained RL baselines. In addition, RCE is much
more sample efficient and has better exploitation capability
of unsafe samples than baseline approaches. We also show
that the robust estimation mechanism is indeed the crucial
factor to ensure safety in the overall RL framework, and
simply extending previous model-based RL approaches to
the safe RL domain may suffer from poor constraint satis-
faction. We believe our approach could inspire more work
along this direction to further improve the robustness and
safety of RL agents.
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A. Discussion about the Safety Gym Environment and the Task Setting

Safety Gym environments use the MuJoCo physics engine as the backbone simulator. Each environment and task is inspired
by a practical safety issue in robotics control. The observation spaces used in the original Safety Gym environment includes
standard robot sensors (accelerometer, gyroscope, magnetometer, and velocimeter) and pseudo-lidar (each lidar sensor
perceives objects of a single kind and is computed by filling bins with appropriate values). The observation space used in
our approach is different from the default Safety Gym options in that we pre-process the sensor data to get rid of some noisy
and unstable sensors, such as the z-axis data of accelerometer. We use the relative coordinates of the perceived objects
instead of the pseudo-lidar readings because the former representation is more friendly to dynamics model learning, which
is important for model-based RL.

Both robots used in our experiment have two-dimensional continuous action spaces and all actions are linearly scaled to
[—1, +1]. We also performed careful hand-tuning of some MuJoCo actuator parameters during sensor analysis, since robust
and responsive control is critical to robot operations in both the simulation environment and the real world.

Our work in the Safety Gym environment has implications for real-world applications. The Goal task in our experiment
resembles the setting of the delivery robot and other domestic robots, where the robot has to navigate around static obstacles
such as furniture to reach the goal. Additionally, since the state representation in our experiments is directly derived from
sensor information and the control input of our environment to the robot is very similar to that of real-world situations,
our model-based RL approach in the simulation environment could serve as an important pre-training for the real-world
applications. Given that a certain amount of unsafe data is required to train our model, it would be unrealistic to have the
real robot repeatedly violate the constraints to collect such data. Therefore, the training in the simulator is an important step
for the model to be transferable to real wold safety-critical applications.

B. Training Detail

Dynamics model: We use the same architecture and hyper-parameters of each neural network in the ensemble dynamics
model. Each neural network is of 3 layers with ReLU activation and each layer is of 1024 neurons. All the training
parameters for one task are the same for MPC-RCE, MPC-CEM, and MPC-random. The batch size is 256, the learning rate
is 0.001, the training epochs are 70, and the optimizer is Adam. The ensemble number is 4 for Point robot-related tasks
and is 5 for Car robot-related tasks. Each neural network model in the ensemble is trained with 80% of the training data to
prevent overfitting.

LightGBM classifier: We use LightGBM to predict the constraint violation given a state in our RCE method and all
the model-based baselines. We use the default gdbt boosting type and 400 base estimators. Each base estimator has a
maximum depth of 8 and 12 leaves. The learning rate is 0.3 and all other hyper-parameters are the default value.

RCE, CEM, and random optimizer: We use the same hyper-parameters for RCE and CEM except that RCE has a discount
value of v = 0.98 for reward and discount value of 3 = 0.4 for cost while CEM only has one discount value v = 0.98 for
the combination of reward and cost. We sample N = 500 solutions for each iteration of RCE and CEM and select top
k = 12 elite samples to estimate the distribution parameters for the next iteration. If the iteration number exceeds 8 or the
sum of the variance of elite samples is less than ¢ = 0.01, the optimization procedure stops and returns the best solution that
has been found so far. To fairly compare with RCE and CEM, we use 5000 samples for the random shooting method so that
the maximum number of samples is at the same order of magnitude. The planning horizon is 7" = 8 for all methods.

TRPO, TRPO-Lagrangian, and CPO: We use the same hyper-parameters offered in the open-sourced code from the
baseline method for the Safety Gym simulation environment (Ray et al., 2019). All hyperparameters are kept the same for
all three model-free baseline methods. The actor-critic neural network model has 2 linear layers of 256 hidden neurons in
each. The discount factor v = 0.99. The target cost limit is 10 with penalty term A initialized to be 1 and a penalty term
learning rate of 0.05. The target KL divergence is 0.01, and for the value function learning, the learning rate is 0.001 with
80 iterations. For each experiment, the total number of environment interactions is 1e7 and 3e4 steps for each training epoch.
More hyper-parameters information can be found in the source code.

C. More Results

The influence of the target cost value for TRPO-Lagrangian and CPO. Since the target cost limit value must be set in
advance before training, we empirically study the performance of TRPO-Lagrangian and CPO with different target values
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in the Point Goal2 environment. The learning curves are shown in Fig 6 and Fig 7. We can see that the task performance
is negatively correlated with the target cost, and there is a dramatic task performance drop if we limit the target cost to
a small value that is comparable with our method’s performance. Compared with model-based approaches, CPO and
TRPO-Lagrangian can hardly achieve comparable task performance with the same level of constraint violation rate. In
addition, we could observe obvious oscillation behavior of the training curves, which induces many unstable factors that
might affect the final performance.

RCE, CEM, and random optimizer comparison. To better compare the performance of RCE, CEM, and random optimizer,
we fix the dynamics model, cost model, and random seed to test in the same Point Goall environment. The smoothed reward
and cost curves are shown in Fig. 8. We can see our RCE approach achieves the lowest cost throughout the testing phase
while maintaining comparable task performance compared to CEM and random. It is interesting to note that there is a
reward drop for RCE and a cost jump for CEM and random methods at around 1000 steps, which means the environment
layout in this episode is difficult. Compared to CEM and random methods, which fail to explore the environment safely, our
RCE approach is able to achieve zero constraint violation.
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Figure 6. Learning curves of reward and cost for CPO with different target cost value.
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Figure 7. Learning curves of reward and cost for TRPO-Lagrangian with different target cost value.
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Figure 8. Testing curves of reward and cost with fixed learned models.



