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Abstract

Safe reinforcement learning (RL) trains a pol-
icy to maximize the task reward while satisfying
safety constraints. While prior works focus on
the performance optimality, we find that the op-
timal solutions of many safe RL problems are
not robust and safe against carefully designed ob-
servational perturbations. We formally analyze
the unique properties of designing effective state
adversarial attackers in the safe RL setting. We
show that baseline adversarial attack techniques
for standard RL tasks are not always effective for
safe RL and proposed two new approaches - one
maximizes the cost and the other maximizes the
reward. One interesting and counter-intuitive find-
ing is that the maximum reward attack is strong,
as it can both induce unsafe behaviors and make
the attack stealthy by maintaining the reward. We
further propose a more effective adversarial train-
ing framework for safe RL and evaluate it via
comprehensive experiments 1. This work sheds
light on the inherited connection between obser-
vational robustness and safety in RL and provides
a pioneer work for future safe RL studies.

1. Introduction
Despite the great success of deep reinforcement learning
in recent years (Mnih et al., 2013), it is still challenging
to ensure safety when deploying them to safety-critical
real-world applications. Safe reinforcement learning (RL)
tackles the problem by solving a constrained optimization
that can maximize the task reward while satisfying certain
constraints (Garcıa & Fernández, 2015). This is usually
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done under the Constrained Markov Decision Processes
(CMDPs) framework, and has shown to be effective in learn-
ing a constraint satisfaction policy in many tasks (Tessler
et al., 2018). The success of recent safe RL approaches
leverages the power of neural networks (Ray et al., 2019;
Liu et al., 2022). However, it has been shown that neural
networks are vulnerable to adversarial attacks – a small per-
turbation of the input data may lead to a large variance of
the output (Machado et al., 2021; Pitropakis et al., 2019),
which raises a concern when deploying a neural network RL
policy to safety-critical applications (Akhtar & Mian, 2018).
While many recent safe RL methods with deep policies can
achieve outstanding constraint satisfaction performance in
noise-free simulation environments, such a concern regard-
ing their vulnerability under adversarial perturbations has
not been studied in the safe RL setting. Particularly, we con-
sider the observational perturbations that commonly exist in
the physical world, such as unavoidable sensor errors and
upstream perception inaccuracy (Zhang et al., 2020a).

Several recent works of observational robust RL have
shown that deep RL agent could be attacked via sophis-
tic observation perturbations, drastically decreasing their
rewards (Huang et al., 2017; Zhang et al., 2020b). However,
the robustness concept and adversarial training methods in
standard RL setting may not be suitable for safe RL because
of an additional metric that characterizes the cost of con-
straint violations (Brunke et al., 2021). The cost should
be more important than the measure of reward, since any
constrained violations could be fatal and unacceptable in the
real world. For example, consider the autonomous vehicle
navigation task where the reward is to reach the goal as fast
as possible and the safety constraint is to not collide with ob-
stacles, then sacrificing some reward is not comparable with
violating the constraint because the latter one may cause
catastrophic consequences. However, we find little research
formally studying the robustness in the safe RL setting with
adversarial observation perturbations, while we believe this
should be an important aspect in the safe RL area, because
a vulnerable policy under adversarial attacks cannot be
regarded as truly safe in the physical world.

We aim to address the following questions in this work: 1)
How vulnerable would a learned RL agent to adversarial
attacks on its observations? 2) How to design effective at-
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tackers in the safe RL setting? 3) How to obtain a robust
policy that can maintain safety even under worst-case pertur-
bations? To answer the above questions, we formally define
the observational robust safe RL problem and discuss the
key metrics in evaluating the adversary and robustness of
policy for safe RL. We also propose two strong adversarial
attacks that can induce the agent performing unsafe behav-
iors, and show that adversarial training can help improve
the robustness of constraint satisfaction. We summarize the
contributions as follows.

1. As far as we are aware, we are the first to formally an-
alyze the unique vulnerability of the optimal policy in
safe RL under observational corruptions. We define the
state-adversarial safe RL problem and investigate its fun-
damental properties. We show that the optimal solutions
of safe RL problems are theoretically vulnerable under
observational adversarial attacks.

2. We show that existing adversarial attack algorithms fo-
cusing on minimizing agent rewards do not always work,
and propose two effective attack algorithms – one max-
imizes the constraint violation cost and one maximizes
the reward. Surprisingly, the maximum reward attack is
strong in inducing unsafe behaviors, both in theory and
practically. We believe this property is overlooked as
maximizing reward is the objective for standard RL, yet
it leads to risky and stealthy attacks to safety constraints.
Since this attack can maintain the nominal reward, it may
not be detected in practice before catastrophic failures.

3. We propose an adversarial training algorithm with the
proposed attackers and show contraction properties of
their Bellman operators. Extensive experiments in con-
tinuous control tasks show that our method is more robust
against adversarial perturbations in terms of constraint
satisfaction.

2. Related Work
Safe RL. One type of approaches utilize domain knowledge
of the target problem to improve the safety of an RL agent,
such as designing a safety filter (Dalal et al., 2018), assum-
ing a sophistic system dynamics model (Berkenkamp et al.,
2017; Luo & Ma, 2021; Chen et al., 2021), or incorporating
expert interventions (Saunders et al., 2017; Alshiekh et al.,
2018). Constrained Markov Decision Process (CMDP) is an-
other commonly used framework to model the safe RL prob-
lem, which can be solved via many constrained optimization
techniques (Garcıa & Fernández, 2015). The Lagrangian-
based method is a type of generic constrained optimization
algorithm to solve CMDP, which introduces additional La-
grange multipliers to penalize constraints violations (Bhat-
nagar & Lakshmanan, 2012; Chow et al., 2017; Stooke
et al., 2020). The multiplier can be optimized via gradient
descend together with the policy parameters (Liang et al.,
2018; Tessler et al., 2018), and can be easily incorporated

in many existing unconstrained RL methods. Another line
of work approximates the non-convex constrained optimiza-
tion problem with low-order Taylor expansions, and then
obtain the dual variable via convex optimization (Achiam
et al., 2017; Yu et al., 2019; Zhang et al., 2020c; Yang et al.,
2020). Since the constrained optimization-based methods
are task-agnostic and more general, we will focus on the
discussions of safe RL upon them.

Robust RL. The robustness definition in the RL context
has many interpretations (Moos et al., 2022), including the
robustness against action perturbations (Tessler et al., 2019),
reward corruptions (Wang et al., 2020; Lin et al., 2020),
domain shift (Tobin et al., 2017; Muratore et al., 2018),
and dynamics uncertainty (Iyengar, 2005; Nilim & Ghaoui,
2003). The most related works are investigating the obser-
vational robustness of an RL agent under state adversarial
attacks (Zhang et al., 2020a;b). It has been shown that the
neural network policies can be easily attacked by adversarial
observation noise and thus lead to much lower rewards than
the optimal policy (Huang et al., 2017; Kos & Song, 2017;
Lin et al., 2017; Pattanaik et al., 2017). However, most of
the robust RL approaches model the attack and defense as a
zero-sum game regarding the reward, while the robustness
regarding safety, i.e., constraint satisfaction for safe RL, has
not been formally investigated.

3. State Adversarial Attack for Safe RL
3.1. MDP, CMDP, and the safe RL problem
We consider an infinite horizon Markov Decision Process
(MDP) that is defined by the tuple (S,A,P, r, γ, µ0), where
S is the state space,A is the action space, P : S×A×S −→
[0, 1] is the transition kernel that specifies the transition
probability p(st+1|st, at) from state st to st+1 under the
action at, r : S × A × S −→ R is the reward function,
γ −→ [0, 1) is the discount factor, and µ0 : S −→ [0, 1] is the
initial state distribution. We consider the safe RL modeled
under the Constrained Markov Decision Process (CMDP)
framework (Altman, 1998), which augments the MDP tuple
toM := (S,A,P, r, c, γ, µ0) with an additional element
c : S × A × S −→ [0, Cm] to characterize the cost for
violating the constraint, where Cm is the maximum cost.

We denote a safe RL problem as Mκ
Π :=

(S,A,P, r, c, γ, µ0,Π, κ), where Π is the policy class,
and κ −→ [0,+∞) is a threshold for constraint vio-
lation cost. Let π(a|s) ∈ Π denote the policy and
τ = {s0, a0, ..., } denote the trajectory. We use shorthand
ft = f(st, at, st+1), f ∈ {r, c} for simplicity. The value
function is V π

f (µ0) = Eτ∼π,s0∼µ0 [
∑∞

t=0 γ
tft], f ∈ {r, c},

which is the expectation of discounted return under the pol-
icy π and the initial state distribution µ0. We overload the
notation V π

f (s) = Eτ∼π,s0=s[
∑∞

t=0 γ
tft], f ∈ {r, c} to de-

note the value function with the initial state s0 = s, and de-
note Qπ

f (s, a) = Eτ∼π,s0=s,a0=a[
∑∞

t=0 γ
tft], f ∈ {r, c}
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as the state-action value function under the policy π. The
objective ofMκ

Π is to find the policy that maximizes the
reward while limiting the cost incurred from constraint
violations to a threshold κ:

π∗ = argmax
π

V π
r (µ0), s.t. V π

c (µ0) ≤ κ. (1)

Vr ( 0)

Vc ( 0)
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Vr ( 0)
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Figure 1: Illustration of definitions via a mapping from the policy
space to the metric plane Π −→ R2, where the x-axis is the reward
return and the y-axis is the cost return. A point on the metric plane
denotes corresponding policies, i.e., the point (vr, vc) represents
the policies {π ∈ Π|V π

r (µ0) = vr, V
π
c (µ0) = vc}. The blue and

green circles denote the policy space of two safe RL problems.

We then define feasibility, optimality and temptation to bet-
ter describe the properties of a safe RL problemMκ

Π. The
figure illustration of one example is shown in Fig. 1. Note
that although the temptation concept naturally exists in many
safe RL settings under the CMDP framework, we did not
find formal descriptions or definitions of it in the literature.
Definition 3.1. Feasibility. The feasible policy class is the
set of policies that satisfies the constraint with threshold κ:
Πκ

M := {π(a|s) : V π
c (µ0) ≤ κ, π ∈ Π}. A feasible policy

should satisfy π ∈ Πκ
M.

Definition 3.2. Optimality. A policy π∗ is optimal in
the safe RL context if 1) it is feasible: π∗ ∈ Πκ

M; 2) no
other feasible policy has higher reward return than it: ∀π ∈
Πκ

M, V π∗

r (µ0) ≥ V π
r (µ0).

We denote π∗ as the optimal policy throughout the paper.
Note that the optimality is defined w.r.t. the reward return
within the feasible policy class Πκ

M rather than the full pol-
icy class space Π, which means that policies that have higher
reward return than π∗ may exist in a safe RL problem due
to the constraint, and we formally define them as tempting
policies because they are rewarding but unsafe:
Definition 3.3. Temptation. We define the tempting policy
class as the set of policies that have higher reward return

than the optimal policy: ΠT
M := {π(a|s) : V π

r (µ0) >
V π∗

r (µ0), π ∈ Π}. A tempting safe RL problem has a
non-empty tempting policy class: ΠT

M ̸= ∅.

We show that all the tempting polices are not feasible
(proved by contradiction in Appendix A.1):

Lemma 3.4. The tempting policy class and the feasible pol-
icy class are disjoint: ΠT

M∩Πκ
M = ∅. Namely, all the tempt-

ing policies violate the constraint: ∀π ∈ ΠT
M, V π

c (µ0) > κ.

The existence of tempting policies is the unique feature and
one of the major challenges of safe RL, since the agent
need to update the policy carefully to prevent from being
tempted when maximizing the reward. One can always tune
the threshold κ to change the temptation status of a safe
RL problem with the same CMDP. In this paper, we only
consider the solvable tempting safe RL problems (i.e., the
problems with a non-empty feasible class and a non-empty
tempting class) because otherwise the non-tempting safe RL
problemMκ

Π can be reduced to a standard RL problem – an
optimal policy could be obtained by maximizing the reward
without considering the constraint, which is not the focus of
this paper.

3.2. Safe RL under observational perturbations
We introduce a deterministic observational adversary ν(s) :
S −→ S which corrupts the state observation of the agent.
We denote the corrupted state as s̃ := ν(s) and the corrupted
policy as π ◦ ν := π(a|s̃) = π(a|ν(s)), as the state is first
contaminated by ν and then used by the operator π. Note
that the adversary does not modify the original CMDP and
true states in the environment, but only the input of the
agent. This setting mimics realistic scenarios, for instance,
the adversary could be the noise from the sensing system or
the errors from the upstream perception system.

Different from standard RL, safe RL has to ensure constraint
satisfaction, since the cost of violating constraints in many
safety-critical applications can be unaffordable. In addition,
the reward metric is usually used to measure the agent’s per-
formance in finishing a task, so significantly reducing the
task reward may warn the agent of the existence of attacks.
As a result, a strong adversary in the safe RL setting aims to
generate more constraint violations while maintaining high
reward to make the attack stealthy (i.e., safety violation). In
contrast, existing adversaries on standard RL aim to reduce
the overall reward or lead to incorrect decision-making (i.e.,
observational robustness). This is one of our main contribu-
tions, which connects existing observational robustness with
safety violation in RL. Concretely, we define two metrics to
evaluate the adversary performance for safe RL:

Definition 3.5. (Attack) Effectiveness JE(ν, π) is de-
fined as the increased cost value under the adversary:
JE(ν, π) = V π◦ν

c (µ0) − V π
c (µ0). An adversary ν is ef-

fective if JE(ν, π) > 0.
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The effectiveness metric measures an adversary’s capability
of attacking the safe RL agent to violate constraints. We
also introduce another metric to characterize the adversary’s
stealthiness w.r.t. the task reward in the safe RL setting.

Definition 3.6. (Reward) Stealthiness JS(ν, π) is de-
fined as the increased reward value under the adversary:
JS(ν, π) = V π◦ν

r (µ0)−V π
r (µ0). An adversary ν is stealthy

if JS(ν, π) ≥ 0.

Note that the stealthiness concept is widely used in super-
vised learning (Sharif et al., 2016; Pitropakis et al., 2019). It
usually refers to that the adversarial attack should be covert
to human eyes regarding the input data so that it can hardly
be identified (Machado et al., 2021). While the stealthiness
regarding the state perturbation range is naturally satisfied
based on the perturbation set definition, we introduce an-
other level of stealthiness in terms of the task reward in the
safe RL task. In some situations, a dramatic reward drop
might be easily detected by the agent. A more stealthy attack
is to maintain the task reward while increasing constraint
violations, see Appendix B.1 for more discussions.

In practice, the power of the adversary is usually re-
stricted (Madry et al., 2017; Zhang et al., 2020a), such
that the perturbed observation will be limited within a
pre-defined perturbation set B(s): ∀s ∈ S, ν(s) ∈
B(s). Following convention, we define the perturbation
set Bϵ

p(s) as the ℓp-ball around the original state: ∀s′ ∈
Bϵ

p(s), ∥s′ − s∥p ≤ ϵ, where ϵ is the ball size.

3.3. Adversarial attacks for safe RL
Given an optimal policy π∗ of a tempting safe RL problem,
we aim to design strong adversaries such that they are effec-
tive in making the agent unsafe and keep reward stealthiness
in some applications. Motivated by Lemma 3.4, we pro-
pose the following Maximum Reward (MR) attacker that
corrupts the observation of a policy π by maximizing the
reward value:

νMR = argmax
ν

V π◦ν
r (µ0) (2)

Proposition 3.7. The MR attacker is guaranteed to be
stealthy and effective for an optimal policy π∗, given enough
large perturbation set Bϵ

p(s) such that V π∗◦νMR
r > V π∗

r .

The MR attacker is counter-intuitive because it is exactly
the goal for standard RL.This is an interesting phenomenon
worthy of highlighting, since we observe that the MR at-
tacker is effective in making the optimal policy unsafe and
retaining stealthy regarding the reward in the safe RL setting.
The proof is given in Appendix A.1, which is based on the
tempting policy property. We further observe the following
important property for the optimal policy:

Lemma 3.8. The optimal policy π∗ of a tempting safe RL
problem satisfies: V π∗

c (µ0) = κ.

Note that Lemma 3.8 holds in expectation rather than for

a single trajectory. The proof is given in Appendix A.2.
Lemma 3.8 suggest that the optimal policy in a tempting
safe RL problem will be vulnerable as it is on the safety
boundary, which motivates us to propose the Maximum
Cost (MC) attacker that corrupts the observation of a policy
π by maximizing the cost value:

νMC = argmax
ν

V π◦ν
c (µ0) (3)

It is apparent to see that the MC attacker is effective w.r.t.
the optimal policy given a large enough perturbation range,
since we directly solve the adversarial state such that it can
maximize the constraint violations. Therefore, as long as
νMC can lead to a policy that has higher cost return than π∗,
it is guaranteed to be effective in making the agent violate
the constraint based on Lemma 3.8.

Practically, given a fixed policy π and its critics
Qπ

f (s, a), f ∈ {r, c}, we obtain the corrupted state s̃ of
s from the MR and MC attackers by solving:

νMR(s) = arg max
s̃∈Bϵ

p(s)
Eã∼π(a|s̃) [Q

π
r (s, ã))]

νMC(s) = arg max
s̃∈Bϵ

p(s)
Eã∼π(a|s̃) [Q

π
c (s, ã))]

(4)

Suppose the policy π and the critics Q are all parametrized
by differentiable models such as neural networks, then we
can back-propagate the gradient through Q and π to solve
the adversarial state s̃. This is similar to the policy op-
timization procedure in TD3 (Fujimoto et al., 2018) and
DDPG (Lillicrap et al., 2015), whereas we replace the op-
timization domain from the policy parameter space to the
observation space Bϵ

p(s). The implementation details of the
proposed attackers can be found in Appendix C.1.

3.4. Theoretical analysis of adversarial attacks
Theorem 3.9 (Existence of optimal and deterministic
MC/MR attackers). A deterministic MC attacker νMC and a
deterministic MR attacker νMR always exist, and there is no
stochastic adversary ν′ such that V π◦ν′

c (µ0) > V π◦νMC
c (µ0)

or V π◦ν′

r (µ0) > V π◦νMR
r (µ0).

Theorem 3.9 provides the theoretical foundation of Bellman
operators that require optimal and deterministic adversaries
in the next section. The proof is given in Appendix A.3. We
can also obtain the upper-bound of constraint violations of
the adversary attack at state s. Denote Sc as the set of unsafe
states that have non-zero cost: Sc := {s′ ∈ S : c(s, a, s′) >
0} and ps as the maximum probability of entering unsafe
states from state s: ps = maxa

∑
s′∈Sc

p(s′|s, a).
Theorem 3.10 (One-step perturbation cost value bound).
Suppose the optimal policy is locally L-Lipschitz continuous
at state s: DTV[π(·|s′)∥π(·|s)] ≤ L ∥s′ − s∥p, and the per-
turbation set of the adversary ν(s) is an ℓp-ball Bϵ

p(s). Let
Ṽ π,ν
c (s) = Ea∼π(·|ν(s)),s′∼p(·|s,a)[c(s, a, s

′)+γV π
c (s′)] de-

note the cost value for only perturbing state s. The upper
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bound of Ṽ π,ν
c (s) is given by:

Ṽ π,ν
c (s)− V π

c (s) ≤ 2Lϵ

(
psCm +

γCm

1− γ

)
. (5)

Note that Ṽ π,ν
c (s) ̸= V π

c (ν(s)) because the next state s′ is
still transited from the original state s, i.e., s′ ∼ p(·|s, a)
instead of s′ ∼ p(·|ν(s), a). Theorem 3.10 indicates that the
power of an adversary is controlled by the policy smoothness
L and perturbation range ϵ. In addition, the ps term indicates
that a safe policy should keep a safe distance to the unsafe
state to prevent from being attacked. We further derive the
upper bound of constraint violation for attacking the entire
episodes.

Theorem 3.11 (Episodic perturbation cost value bound).
Given a feasible policy π ∈ Πκ

M, suppose the L-Lipschitz
continuity holds globally for π, and the perturbation set of
ν is within an ℓp-ball, then the following bound holds:

V π◦ν
c (µ0) ≤ κ+

2LϵCm

(
1

1− γ
+

4γLϵ

(1− γ)2

)(
max

s
ps +

γ

1− γ

)
.

(6)

See Theorem 3.10, 3.11 proofs in Appendix A.4, A.5. We
can still observe that the maximum cost value under pertur-
bations is bounded by the Lipschitzness of the policy and
the maximum perturbation range ϵ. The bound is tight since
when ϵ −→ 0 (no attack) or L −→ 0 (constant policy π(·|s)
for all states), the RHS is 0 for Eq. (5) and κ for Eq. (6),
which means that the attack is ineffective.

4. Observational Robust Safe RL
4.1. Adversarial training against observational

perturbations

To defend against observational perturbations, we propose
an adversarial safe RL training method. Similar to adversar-
ial training in the supervised learning literature, we directly
optimize the policy upon the attacked sampling trajectories
τ̃ = {s0, ã0, s1, ã1, ...}, where ãt ∼ π(a|ν(st)). We can
compactly represent the adversarial safe RL objective under
observational perturbation as:

π∗ = argmax
π

V π◦ν
r (µ0), s.t. V π◦ν

c (µ0) ≤ κ. (7)

The key part is selecting proper adversaries during train-
ing to evaluate the value function under observational
perturbations accurately, which can be done via the fol-
lowing Bellman operators, where ps

′

sa = p(s′|s, a) and
fs′

sa = f(s, a, s′), f ∈ {r, c}:
Definition 4.1. Define the Bellman policy operator Tπ as:

(TπV π◦ν
f )(s) =∑

a∈A
π(a|ν(s))

∑
s′∈S

ps
′

sa

[
fs′

sa + γV π◦ν
f (s′)

]
. (8)

Define the Bellman adversary effectiveness operator T ∗
c as:

(T ∗
c V π◦ν

c )(s) =

max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
cs

′

sa + γV π◦ν
c (s′)

]
. (9)

Define the Bellman adversary reward stealthiness operator
T ∗
r as :

(T ∗
r V π◦ν

r )(s) =

max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
rs

′

sa + γV π◦ν
r (s′)

]
. (10)

The Bellman equation can be written as V π◦ν
f (s) =

(TπV π◦ν
f )(s). We further prove the contraction properties:

Theorem 4.2 (Bellman contraction). The Bellman operators
Tπ, T ∗

c , T ∗
r are contractions under the sup-norm ∥ · ∥∞ and

will converge to their fixed points, respectively. In addition,
the fixed point for T ∗

c is V π◦νMC
c = T ∗

c V π◦νMC
c , and the fixed

point for T ∗
r is V π◦νMR

r = T ∗
r V π◦νMR

r .

Theorem 4.2 and 3.9 shows that we can evaluate the policy
performance under a fixed deterministic adversary, which
provides the theoretical justification of adversarial training,
i.e., training a safe RL agent under observational perturbed
sampling trajectories. In addition, the value functions under
the MC and MR adversaries are the fixed points of the T ∗

c

and T ∗
r , which suggests that performing adversarial training

for the RL agent with the MC and MR attackers will enable
the agent to be robust against the most effective and the
most reward stealthy perturbations, respectively. We have
the following propositions:

Proposition 4.3. Suppose an adversarial trained policy π′

satisfies: V π′◦νMC
c (µ0) ≤ κ, then π′ ◦ ν is guaranteed to be

feasible with any Bϵ
p bounded adversarial perturbations.

Proposition 4.3 indicates that by solving the adversarial
constrained optimization problem under the MC attacker,
all the feasible solutions will be safe under any bounded
adversarial perturbations.

Proposition 4.4. Suppose an adversarial trained policy π′

satisfies: V π′◦νMR
c (µ0) ≤ κ, then π′ ◦ ν is guaranteed to be

non-tempting with any Bϵ
p bounded adversarial perturba-

tions.

Proposition 4.4 shows a nice property for training a robust
policy, since the max operation over the reward in the safe
RL objective may lead the policy to the tempting policy
class, while the adversarial training with MR attacker can
naturally keep the trained policy a safe distance from the
tempting policy class, such that the adversarial trained policy
will be robust against any bounded reward stealthy attackers.
Practically, we observe that both MC and MR attackers can
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increase the robustness and safety via adversarial training,
and could be easily plugged in any safe RL algorithms, in
principle.

4.2. Practical implementation
The meta adversarial training algorithm is shown in Algo.
1. We particularly adopt the primal-dual methods (Ray
et al., 2019; Stooke et al., 2020; Tessler et al., 2018) that are
widely used in the safe RL literature as the learner, then
the adversarial training objective in Eq. (7) can be converted
to a min-max form by using the Lagrange multiplier λ:

(π∗, λ∗) = min
λ≥0

max
π∈Π

V π◦ν
r (µ0)− λ(V π◦ν

c (µ0)− κ) (11)

Solving the inner maximization (primal update) via any
policy optimization methods and the outer minimization
(dual update) via gradient descent iteratively yields the
Lagrangian algorithm. Under proper learning rates and
bounded noise assumptions, the iterates (πn, λn) converge
to a fixed point (a local minimum) almost surely (Tessler
et al., 2018; Paternain et al., 2019). We will particularly use
PPO (Schulman et al., 2017) in the primal update.
Algorithm 1 Adversarial safe RL training meta algorithm
Input: Policy class Π, Safe RL learner, Adversary
scheduler
Output: Observational robust policy π

1: Initialize policy π ∈ Π and adversary ν : S −→ S
2: for each training epoch n = 1, ..., N do
3: Rollout trajectories: τ̃ = {s0, ã0, ...}T ,

ãt ∼ π(a|ν(st))
4: Run safe RL learner: π ←− learner(τ̃ ,Π)
5: Update adversary: ν ←− scheduler(τ̃ , π, n)
6: end for

Based on previous theoretical analysis, we adopt MC or
MR as the adversary when sampling trajectories. The
scheduler function aims to train the reward and cost Q-
value functions for the MR and the MC attackers, because
many on-policy algorithms such as PPO do not provide them.
In addition, the scheduler can update the power of adversary
based on the learning progress accordingly, since a strong
adversary at the beginning may prohibit the learner ex-
ploring the environment and thus corrupts the training. We
gradually increase the perturbation range ϵ along with the
training epochs to adjust the adversary perturbation set Bϵ

p,
such that the agent will not be too conservative in the early
stage of training. The similar idea is also used in adversarial
training literature (Salimans et al., 2016; Arjovsky & Bot-
tou, 2017; Gowal et al., 2018) and the curriculum learning
literature (Dennis et al., 2020; Portelas et al., 2020). See
more implementation details in Appendix C.3.
5. Experiment
In this section, we aim to answer the questions raised in
Sec. 1. To this end, we adopt the robot locomotion con-

tinuous control tasks that are easy to interpret, motivated
by safety, and used in many previous works (Achiam et al.,
2017; Chow et al., 2019; Zhang et al., 2020c). The sim-
ulation environments are from a public available bench-
mark (Gronauer, 2022). We consider two tasks, and train
multiple different robots (Car, Drone, Ant) for each task:

Run task. Agents are rewarded for running fast between
two safety boundaries, and are given costs for violation
constraints if they run across the boundaries or exceed an
agent-specific velocity threshold. The tempting policies can
violate the velocity constraint to obtain more rewards.

Circle task. The agents are rewarded for running in a circle
in clock-wise direction, but are constrained to stay within a
safe region that is smaller than the radius of the target circle.
The tempting policies in this task will leave the safe region
to gain more rewards.

We name each task via the Robot-Task format, for in-
stance, Car-Run. In addition, we will use the PID PPO-
Lagrangian (abbreviated as PPOL) method (Stooke et al.,
2020) as the base safe RL algorithm to fairly compare dif-
ferent robust training approaches, while the proposed adver-
sarial training can be used in other safe RL methods as well.
The detailed hyperparameters of the adversaries and safe
RL algorithms can be found in Appendix C.

5.1. Adversarial attacker comparison
We first demonstrate the vulnerability of the optimal safe
RL policies without adversarial training and compare the
performance of different adversaries. All the adversaries
have the same ℓ∞ norm perturbation set Bϵ

∞ restriction. We
adopt three adversary baselines, including one improved
version:

Random attacker baseline. This is a simple baseline by
sampling the corrupted observations randomly within the
perturbation set via a uniform distribution.

Maximum Action Difference (MAD) attacker baseline.
The MAD attacker (Zhang et al., 2020a) is designed for stan-
dard RL tasks, which is shown to be effective in decreasing
a trained RL agent’s reward return. The optimal adversarial
observation is obtained by maximizing the KL-divergence
between the corrupted policy:

νMAD(s) = argmaxs̃∈Bϵ
p(s)

DKL [π(a|s̃)∥π(a|s)]

Adaptive MAD (AMAD) attacker baseline. Since the
vanilla MAD attacker is not designed for safe RL, we further
improve it to an adaptive version as a stronger baseline. The
motivation comes from Lemma 3.8 – the optimal policy will
be close to the constraint boundary that with high risks (see
Appendix C.6 for more details): Therefore, AMAD only
perturbs the observation when the agent is within high-risk
regions that is determined by the cost value function and a
threshold ξ to achieve more effective attack:



On the Robustness of Safe Reinforcement Learning under Observational Perturbations

Figure 2: Reward and cost curves of all 5 attackers evaluated on well-trained vanilla PPO-Lagrangian models w.r.t. the perturbation
range ϵ. The curves are averaged over 50 episodes and 5 seeds, where the solid lines are the mean and the shadowed areas are the standard
deviation. The dashed line is the cost without perturbations.

νAMAD(s) :=

{
νMAD(s), if V π

c (s) ≥ ξ,

s, otherwise .

Experiment setting. We evaluate the performance of all
three baselines above and our MC, MR adversaries by at-
tacking well-trained PPO-Lagrangian policies in different
tasks. The trained policies can achieve nearly zero con-
straint violation costs without observational perturbations.
We keep the trained model weights and environment seeds
fixed for all the attackers to ensure fair comparison.

Experiment result. Fig. 2 shows the attack results of the
5 adversaries on PPOL-vanilla. Each column corresponds
to an environment. The first row is the episode reward
and the second row is the episode cost of constraint vio-
lations. We can see that the vanilla safe RL policies are
vulnerable, since the safety performance deteriorates (cost
increases) significantly even with a small adversarial per-
turbation range ϵ. Generally, we can see an increasing cost
trend as the ϵ increases, except the MAD attacker. Although
MAD can reduce the agent’s reward quite well, it fails to
perform an effective attack in increasing the cost because
the reward decrease may keep the agent away from high-risk
regions. It is even worse than the random attacker in the
Car-Circle task. The improved AMAD attacker is a
stronger baseline than MAD, as it only attacks in high-risk
regions and thus has a higher chance of entering unsafe
regions to induce more constraint violations. More compar-
isons between MAD and AMAD can be found in Appendix
C.9. Our proposed MC and MR attackers outperform all
baselines attackers (Random, MAD and AMAD) in terms
of effectiveness by increasing the cost with a large margin
in most tasks. Surprisingly, the MR attacker can achieve
even higher costs than MC and is more stealthy as it can
maintain or increase the reward well, which validates our

theoretically analysis and the existence of tempting policies.

5.2. Performance of safe RL with Adversarial Training
We adopt 5 baselines, including the PPOL-vanilla method
without robust training, the naive adversarial training under
random noise PPOL-random, the state-adversarial algo-
rithm SA-PPOL that is proposed in (Zhang et al., 2020a),
but we extend their PPO in standard RL setting to PPOL
in the safe RL setting. The original SA-PPOL algorithm
utilizes the MAD attacker to compute the adversarial states,
and then adds a KL regularizer to penalize the divergence
between them and the original states. We add two additional
baselines SA-PPOL(MC) and SA-PPOL(MR) for ablation
study, where we change the MAD attacker to our proposed
MC and MR adversaries. Our adversarial training meth-
ods are named as ADV-PPOL(MC) and ADV-PPOL(MR),
which are trained under the MC and MR attackers respec-
tively. We use the same PPOL implementation and hy-
perparameters for all methods for fair comparison. More
details of the baselines and hyperparameters can be found
in Appendix C.5-C.8.

Results. The evaluation results of different trained policies
under adversarial attacks are shown in Table 1, where Natu-
ral represents the performance without noise. We train each
algorithm with 5 random seeds and evaluate each trained
policy with 50 episodes under each attacker to obtain the
values. The training and testing perturbation ranges ϵ are
the same. We use gray shadows to highlight the top two
safest agents that with the smallest cost values, but we ig-
nore the failure agents whose rewards are less than 50% of
the PPOL-vanilla method. We mark the failure agents with
⋆. Due to the page limit, we leave the evaluation results
under random and MAD attackers to Appendix C.9.

Analysis. We can observe that although most baselines can
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Table 1: Evaluation results of natural performance (no attack) and under 3 attackers. Our methods are ADV-PPOL(MC/MR). Each value
is reported as: mean ± standard deviation for 50 episodes and 5 seeds. We shadow two lowest-costs agents under each attacker column
and break ties based on rewards, excluding the failing agents (whose natural rewards are less than 50% of PPOL-vanilla’s). We mark the
failing agents with ⋆.

Natural AMAD MC MREnv Method Reward Cost Reward Cost Reward Cost Reward Cost
PPOL-vanilla 561.33±1.97 0.15±0.36 548.04±17.72 13.49±30.93 624.49±8.87 184.09±0.52 624.46±8.86 184.06±0.47
PPOL-random 556.84±1.87 0.01±0.08 550.66±1.71 1.73±2.05 584.18±2.69 183.79±0.73 585.79±2.01 183.91±0.59

SA-PPOL 545.87±2.13 0.0±0.0 546.95±2.11 0.0±0.0 571.14±1.5 6.44±7.28 571.07±1.33 1.77±3.31
SA-PPOL(MC) 552.58±3.84 0.0±0.0 541.58±3.6 0.0±0.0 568.96±1.92 1.17±2.07 569.6±1.51 0.67±1.24
SA-PPOL(MR) 543.0±1.14 0.0±0.0 537.19±1.47 0.0±0.0 568.32±1.95 16.27±23.2 568.29±2.12 12.23±17.26

ADV-PPOL(MC) 525.76±2.99 0.0±0.0 516.22±3.52 0.0±0.0 555.64±3.44 0.05±0.21 554.48±2.78 0.01±0.08

Car-Run
ϵ = 0.05

ADV-PPOL(MR) 525.93±2.28 0.0±0.0 514.97±2.68 0.0±0.0 557.38±2.83 0.06±0.24 556.87±3.03 0.05±0.22
PPOL-vanilla 347.17±1.53 0.0±0.0 362.18±11.24 35.69±17.74 336.05±9.43 79.0±0.0 345.64±5.22 79.0±0.0
PPOL-random 343.71±1.55 0.0±0.0 361.85±18.03 65.58±22.58 268.28±4.26 0.9±2.28 317.25±40.34 33.66±29.86

SA-PPOL 284.47±32.13 0.0±0.0 306.55±26.44 11.85±18.04 156.97±384.11 61.88±18.49 403.11±163.75 75.73±7.71
⋆ SA-PPOL(MC) 174.61±34.37 0.06±0.73 86.35±56.22 0.0±0.0 205.34±29.57 10.13±10.67 217.51±24.77 8.31±6.05
⋆ SA-PPOL(MR) 0.13±0.22 0.0±0.0 0.11±0.21 0.0±0.0 0.25±0.37 0.0±0.0 0.28±0.43 0.0±0.0
ADV-PPOL(MC) 273.4±16.98 0.0±0.0 268.0±12.0 0.05±0.57 275.0±28.26 1.1±3.17 294.8±23.67 18.11±25.87

Drone-Run
ϵ = 0.025

ADV-PPOL(MR) 233.31±20.68 0.0±0.0 238.0±22.15 0.0±0.0 229.8±68.0 6.81±8.38 238.11±46.17 0.95±1.92
PPOL-vanilla 678.4±12.64 1.23±1.4 676.23±12.27 2.68±2.16 661.3±58.17 66.41±14.07 706.32±18.83 112.33±25.57
PPOL-random 673.42±14.47 1.01±1.06 670.6±13.59 1.9±1.47 661.47±10.02 45.94±10.2 670.85±18.73 46.97±11.63

SA-PPOL 658.83±14.14 0.46±0.82 658.42±13.96 0.66±0.87 668.14±25.7 67.68±20.17 694.86±11.05 87.1±20.78
SA-PPOL(MC) 574.36±25.69 3.03±3.15 574.85±26.37 3.16±3.48 604.77±30.51 21.39±10.83 619.4±31.35 32.87±12.69
⋆ SA-PPOL(MR) 90.49±60.14 5.33±4.27 77.64±84.93 5.17±4.24 77.99±72.79 6.33±4.87 69.93±96.51 6.17±4.87
ADV-PPOL(MC) 601.25±18.6 0.0±0.0 599.31±18.34 0.0±0.0 666.73±15.21 1.1±1.02 665.47±18.29 1.75±1.54

Ant-Run
ϵ = 0.025

ADV-PPOL(MR) 620.17±27.28 0.17±0.41 618.04±24.66 0.31±0.55 634.96±14.94 4.07±2.35 648.95±17.67 4.69±2.81
PPOL-vanilla 337.69±152.34 1.8±3.91 274.61±78.92 92.53±39.32 265.61±12.43 69.33±18.91 238.06±101.01 74.47±38.44
PPOL-random 398.71±48.96 0.17±0.9 293.77±105.83 69.97±46.75 307.77±32.95 59.3±26.29 295.2±45.56 49.73±22.98

SA-PPOL 403.92±22.63 0.4±2.15 382.8±20.57 0.37±1.97 361.0±12.96 109.1±6.0 452.98±26.72 89.03±9.13
SA-PPOL(MC) 417.78±17.79 0.33±1.8 314.13±27.73 0.0±0.0 355.12±13.42 98.43±14.52 468.1±14.41 87.5±9.17
SA-PPOL(MR) 389.03±47.53 0.2±1.0 351.49±34.16 0.14±0.69 342.67±39.23 77.9±21.57 414.87±66.09 75.68±20.73

ADV-PPOL(MC) 302.3±12.24 0.1±0.7 296.23±19.02 1.86±5.49 310.37±25.68 1.12±3.98 261.52±24.51 0.28±1.59

Car Circle
ϵ = 0.05

ADV-PPOL(MR) 309.42±35.45 0.0±0.0 321.44±20.52 6.66±10.94 258.52±31.53 0.08±0.56 308.6±54.7 0.16±1.12
PPOL-vanilla 627.49±55.24 0.27±1.12 527.6±171.54 34.5±36.73 228.79±181.92 95.17±59.23 85.79±159.67 174.4±81.58
PPOL-random 604.31±46.83 0.37±1.97 559.2±173.25 27.67±32.66 159.16±184.15 91.5±98.26 130.08±146.67 103.1±92.03

SA-PPOL 503.13±19.89 0.0±0.0 496.34±20.54 0.0±0.0 430.64±89.64 97.57±27.47 346.99±320.08 109.5±78.1
SA-PPOL(MC) 347.43±97.49 8.5±35.32 346.25±41.68 0.0±0.0 329.05±143.47 58.77±34.94 380.53±176.19 78.07±60.05
⋆ SA-PPOL(MR) 184.7±128.7 11.94±43.67 189.76±118.14 15.38±47.38 189.18±142.46 44.62±35.83 219.87±138.35 49.14±52.87
ADV-PPOL(MC) 359.02±33.01 0.0±0.0 351.57±52.5 1.48±6.44 399.78±69.47 4.16±12.57 356.09±90.42 9.66±28.48

Drone Circle
ϵ = 0.025

ADV-PPOL(MR) 356.6±46.91 0.0±0.0 339.04±72.43 5.36±23.08 275.43±95.08 5.66±22.41 379.52±87.22 1.2±6.47
PPOL-vanilla 157.44±26.21 2.7±6.02 143.37±36.86 3.23±9.87 153.98±34.52 38.93±29.78 208.81±20.1 70.53±22.6
PPOL-random 155.81±16.84 2.67±6.6 150.65±17.63 2.17±5.02 114.24±35.22 1.83±6.08 183.07±24.63 58.53±22.3

SA-PPOL 143.34±32.08 0.13±0.56 142.66±35.01 4.53±10.67 159.02±43.95 37.47±26.5 203.85±27.56 51.47±27.79
⋆ SA-PPOL(MC) -0.62±1.72 0.0±0.0 0.09±1.27 0.0±0.0 -0.17±1.46 0.0±0.0 -0.34±1.61 0.0±0.0
⋆ SA-PPOL(MR) -0.8±2.28 0.0±0.0 -0.57±2.2 0.0±0.0 -0.89±2.12 0.0±0.0 -0.86±2.09 0.0±0.0
ADV-PPOL(MC) 135.98±15.99 0.3±1.62 130.76±18.87 0.77±4.13 137.13±29.4 6.33±13.96 134.68±22.01 5.3±9.39

Ant Circle
ϵ = 0.025

ADV-PPOL(MR) 133.27±19.53 0.87±3.25 127.19±32.64 1.2±4.49 118.57±26.37 0.83±2.02 141.74±23.63 1.07±3.08

achieve near zero natural cost, their safety performances are
vulnerable under the strong MC and MR attackers, which
are more effective than AMAD in inducing unsafe behaviors.
The proposed adversarial training methods (ADV-PPOL)
consistently outperform baselines in safety with the lowest
costs while maintaining high rewards in most tasks. The
comparison with PPOL-random indicates that the MC and
MR attackers are essential ingredients of adversarial train-
ing. Although SA-PPOL agents can maintain reward very
well, they are not safe as to constraint satisfaction under ad-
versarial perturbations in most environments. The ablation
studies with SA-PPOL(MC) and SA-PPOL(MC) suggest
that the KL-regularized robust training technique, which is
successful in standard robust RL setting, does not work well
for safe RL even with the same adversarial attacks during
training, and they may also fail to obtain a high-rewarding
policy in some tasks (see discussions of the training failure
in Appendix B.2). As a result, we can conclude that the
proposed adversarial training methods with the MC and MR

attackers are better than baselines regarding both training
stability and testing robustness and safety.

6. Conclusion
We study the observational robustness regarding constraint
satisfaction for safe RL and show that the optimal policy of
tempting safe RL problems could be vulnerable. We propose
two effective attackers to induce unsafe behaviors. An inter-
esting and surprising finding is that maximizing the reward
attack is as effective as directly maximizing the cost while
keeping stealthiness. We further propose an adversarial
training method to increase the robustness and safety perfor-
mance for safe RL, and a wide range of experiments show
that the proposed method outperforms the robust training
techniques for standard RL settings. We hope this work can
attract more attention in the safe RL community to studying
safety from the robustness perspective, as both safety and
robustness are important ingredients before deploying RL
to the real world.
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A. Proofs and Discussions
A.1. Proof of Lemma 3.4 and Proposition 3.7 – infeasible tempting policies

Lemma 3.4 indicates that all the tempting policies are infeasible: ∀π ∈ ΠT
M, V π

c (µ0) > κ. We will prove it by contradiction.

Proof. For a tempting safe RL problem Mκ
Π, there exists a tempting policy that satisfies the constraint: π′ ∈

ΠT
M, V π′

c (µ0) ≤ κ, π′ ∈ Πκ
M. Denote the optimal policy as π∗, then based on the definition of the tempting policy,

we have V π′

r (µ0) > V π∗

r (µ0). Based on the definition of optimality, we know that for any other feasible policy π ∈ Πκ
M,

we have:
V π′

r (µ0) > V π∗

r (µ0) ≥ V π
r (µ0),

which indicates that π′ is the optimal policy forMκ
Π. Then again, based on the definition of tempting policy, we will obtain:

V π′

r (µ0) > V π′

r (µ0),

which contradicts to the fact that V π′

r (µ0) = V π′

r (µ0). Therefore, there is no tempting policy that satisfies the constraint.

Proposition 3.7 suggest that as long as the MR attacker can successfully obtain a policy that has higher reward return than
the optimal policy π∗ given enough large perturbation set Bϵ

p(s), it is guaranteed to be reward stealthy and effective.

Proof. The stealthiness is naturally satisfied based on the definition. The effectiveness is guaranteed by Lemma 3.4. Since
the corrupted policy π∗ ◦ νMR can achieve V π∗◦νMR

r > V π∗

r , we can conclude that π∗ ◦ νMR is within the tempting policy
class, since it has higher reward than the optimal policy. Then we know that it will violate the constraint based on Lemma 3.4,
and thus the MR attacker is effective.

A.2. Proof of Lemma 3.8 – optimal policy’s cost value

Lemma 3.8 says that the optimal policy π∗ of a tempting safe RL problem satisfies: V π∗

c (µ0) = κ. We will also prove it by
contradiction.

Proof. Suppose the optimal policy π∗ for a tempting safe RL problemMκ
Π has: V π∗

c (µ0) < κ. Denote π′ ∈ ΠT
M as a

tempting policy. Based on Lemma 3.4, we know that V π′

c (µ0) > κ and V π′

r (µ0) > V π∗

r (µ0). Then we can compute a
weight α:

α =
κ− V π∗

c (µ0)

V π′
c (µ0)− V π∗

c (µ0)
. (12)

We can see that:
αV π′

c (µ0) + (1− α)V π∗

c (µ0) = κ. (13)

We further define another policy π̄ based on the mixture of π∗ and π′, such that a trajectory of a whole episode has α
probability to be sampled from π′ and 1− α probability to be sampled from π∗:

τ ∼ π̄ :=

{
τ ∼ π′, with probability α,

τ ∼ π∗, with probability 1− α.
(14)

Then we can conclude that π̄ is also feasible:

V π̄
c (µ0) = Eτ∼π̄[

∞∑
t=0

γtct] = αEτ∼π′ [

∞∑
t=0

γtct] + (1− α)Eτ∼π∗ [

∞∑
t=0

γtct] (15)

= αV π′

c (µ0) + (1− α)V π∗

c (µ0) = κ. (16)
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In addition, π̄ has higher reward return than the optimal policy π∗:

V π̄
r (µ0) = Eτ∼π̄[

∞∑
t=0

γtrt] = αEτ∼π′ [

∞∑
t=0

γtrt] + (1− α)Eτ∼π∗ [

∞∑
t=0

γtrt] (17)

= αV π′

r (µ0) + (1− α)V π∗

r (µ0) (18)

> αV π∗

r (µ0) + (1− α)V π∗

r (µ0) = V π∗

r (µ0), (19)

where the inequality comes from the definition of the tempting policy. Since π̄ is both feasible, and has strictly higher reward
return than the policy π∗, we know that π∗ is not optimal, which contradicts to our assumption. Therefore, the optimal
policy π∗ should always satisfy V π∗

c (µ0) = κ.

Remark A.1. The cost value function V π∗

c (µ0) = Eτ∼π[
∑∞

t=0 γ
tct] is based on the expectation of the sampled trajectories

(expectation over episodes) rather than a single trajectory (expectation within one episode), because for a single sampled
trajectory τ ∼ π, V π∗

c (τ) =
∑∞

t=0 γ
tct may even not necessarily satisfy the constraint.

Remark A.2. The proof also indicates that the range of metric function V := {(V π
r (µ0), V

π
c (µ0))} (as shown as the blue

circle in Fig.1) is convex when enlarging the domain from Π to a linear policy mixture space Π̄. For simplicity, we define
⟨α,π⟩ as a policy mixture π̄ ∈ Π̄ which samples mixed trajectories episodically,

τ ∼ ⟨α,π⟩ := τ ∼ πi, with probability αi, i = 1, 2, . . . , (20)

where α = [α1, α2, . . . ], αi ≥ 0,
∑

i=1 αi = 1,π = [π1, π2, . . . ]. Similar to the above proof, we have

V
⟨α,π⟩
f (µ0) = ⟨α, V π

f (µ0)⟩, f ∈ {r, c}, (21)

where V π
f (µ0) = [V π1

f (µ0), V
π2

f (µ0), . . . ]. Consider ∀(vr1, vc1), (vr2, vc2) ∈ V , suppose they correspond to policy mixture

⟨α,π⟩ and ⟨β,π⟩ respectively, then ∀t ∈ [0, 1], the new mixture ⟨tα + (1 − t)β,π⟩ ∈ Π̄ and V
⟨tα+(1−t)β,π⟩
f (µ0) =

t · vf1 + (1− t) · vf2 ∈ V . Therefore, V is a convex set.

A.3. Proof of Theorem 3.9 – existence of optimal deterministic MC/MR adversary

Existence. Given a fixed policy π, We first introduce two adversary MDPs M̂r = (S, Â, P̂, R̂r, γ) for reward maximization
adversary and M̂c = (S, Â, P̂, R̂c, γ) for cost maximization adversary to prove the existence of optimal adversary. In
adversary MDPs, the adversary acts as the agent to choose a perturbed state as the action (i.e., â = s̃) to maximize the
cumulative reward

∑
R̂. Therefore, in adversary MDPs, the action space Â = S and ν(·|s) denotes a policy distribution.

Based on the above definitions, we can also derive transition function and reward function for new MDPs (Zhang et al.,
2020a)

p̂(s′|s, a) =
∑
a

π(a|â)p(s′|s, a), (22)

R̂f (s, â, s
′) =

{∑
a π(a|â)p(s′|s,a)f(s,a,s′)∑

a π(a|â)p(s′|s,a) , â ∈ Bϵ
p(s)

−C, â /∈ Bϵ
p(s)

, f ∈ {r, c}, (23)

where â = s̃ ∼ ν(·|s) and C is a constant. Therefore, with sufficiently large C, we can guarantee that the optimal adversary
ν∗ will not choose a perturbed state â out of the lp-ball of the given state s, i.e., ν∗(â|s) = 0,∀â /∈ Bϵ

p(s).

According to the properties of MDP (Sutton et al., 1998), M̂r,M̂c have corresponding optimal policy ν∗r , ν
∗
c , which are

deterministic by assigning unit mass probability to the optimal action â for each state.

Next, we will prove that ν∗r = νMR, ν
∗
c = νMC. Consider value function in M̂f , f ∈ {r, c}, for an adversary ν ∈ N :=
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{ν|ν∗(â|s) = 0,∀â /∈ Bϵ
p(s)}, we have

V̂ ν
f (s) = Eâ∼ν(·|s),s′∼p̂(·|s,â)[R̂f (s, â, s

′) + γV̂ ν
f (s′)] (24)

=
∑
â

ν(â|s)
∑
s′

p̂(s′|s, â)[R̂f (s, â, s
′) + γV̂ ν

f (s′)] (25)

=
∑
â

ν(â|s)
∑
s′

∑
a

π(a|â)p(s′|s, a)
[∑

a π(a|â)p(s′|s, a)f(s, a, s′)∑
a π(a|â)p(s′|s, a)

+ γV̂ ν
f (s′)

]
(26)

=
∑
s′

p(s′|s, a)
∑
a

π(a|â)
∑
â

ν(â|s)[f(s, a, s′) + γV̂ ν
f (s′)] (27)

=
∑
s′

p(s′|s, a)
∑
a

π(a|ν(s))[f(s, a, s′) + γV̂ ν
f (s′)]. (28)

Recall the value function in original safe RL problem,

V π◦ν
f (s) =

∑
s′

p(s′|s, a)
∑
a

π(a|ν(s))[f(s, a, s′) + γV π◦ν
f (s′)]. (29)

Therefore, V π◦ν
f (s) = V̂ ν

f (s), ν ∈ N . Note that in adversary MDPs ν∗f ∈ N and

ν∗f = argmax
ν

Ea∼π(·|ν(s)),s′∼p(·|s,a)[f(s, a, s
′) + γV̂ ν

f (s′)]. (30)

We also know that ν∗f is deterministic,

⇒ ν∗f (s) = argmax
ν

Ea∼π(·|s̃),s′∼p(·|s,a)[f(s, a, s
′) + γV̂ ν

f (s′)] (31)

= argmax
ν

Ea∼π(·|s̃),s′∼p(·|s,a)[f(s, a, s
′) + γV π◦ν

f (s′)] (32)

= argmax
ν

V π◦ν
f (s, a). (33)

Therefore, ν∗r = νMR, ν
∗
c = νMC.

Optimality. We will prove the optimality by contradiction. By definition, ∀s ∈ S,

V π◦ν′

c (s0) ≤ V π◦νMC
c (s0). (34)

Suppose ∃ν′, s.t.V π◦ν′

c (µ0) > V π◦νMC
c (µ0), then there also exists s0 ∈ S, s.t.V π◦ν′

c (s0) > V π◦νMC
c (s0), which is

contradictory to Eq.(34). Similarly, we can also prove that the property holds for νMR by replacing V π◦ν
c with V π◦ν

r .
Therefore, there is no other adversary that achieves higher attack effectiveness than νMR or higher reward stealthiness than
νMR.

A.4. Proof of Theorem 3.10 – one-step attack cost bound

We have
V π,ν
c (s) = Ea∼π(·|ν(s)),s′∼p(·|s,a)[c(s, a, s

′) + γV π
c (s′)]. (35)

By Bellman equation,
V π
c (s) = Ea∼π(·|s),s′∼p(·|s,a)[c(s, a, s

′) + γV (s′)]. (36)

For simplicity, denote ps
′

sa = p(s′|s, a) and we have

Ṽ π,ν
c (s)− Ṽ π

c (s) =
∑
a∈A

(
π(a|ν(s))− π(a|s)

∑
s∈S

ps
′

sa(c(s, a, s
′) + γV π

c (s′))

)
(37)

≤

(∑
a∈A
|π(a|ν(s))− π(a|s)|

)
max
a∈A

∑
s∈S

ps
′

sa(c(s, a, s
′) + γV π

c (s′)). (38)
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By definition, DTV[π(·|ν(s)∥π(·|s)] = 1
2

∑
a∈A |π(a|ν(s))− π(a|s)|, and c(s, a, s′) = 0, s′ ∈ Sc. Therefore, we have

Ṽ π,ν
c (s)− V π

c (s) ≤ 2DTV [π(·|ν(s)∥π(·|s)]max
a∈A

(∑
s∈Sc

ps
′

sac(s, a, s
′) +

∑
s∈S

ps
′

saγV
π
c (s′)

)
(39)

≤ 2L∥ν(s)− s∥p max
a∈A

(∑
s∈Sc

ps
′

saCm +
∑
s∈S

ps
′

saγ
Cm

1− γ

)
(40)

≤ 2Lϵ

(
psCm +

γCm

1− γ

)
. (41)

A.5. Proof of Theorem 3.11 – episodic attack cost bound

According to the Corollary 2 in CPO (Achiam et al., 2017),

V π◦ν
c (µ0)− V π

c (µ0) ≤
1

1− γ
Es∼dπ,a∼π◦ν

[
Aπ

c (s, a) +
2γδπ◦νc

1− γ
DTV[π

′(·|s)∥π(·|s)]
]
, (42)

where δπ◦νc = maxs |Ea∼π◦νA
π
c (s, a)| and Aπ

c (s, a) = Es′∼p(·|s,a)[c(s, a, s
′) + γV π

c (s′)− V π
c (s)] denotes the advantage

function. Note that

Ea∼π◦νA
π
c (s, a) = Ea∼π◦ν [Es′∼p(·|s,a)[c(s, a, s

′) + γV π
c (s′)− V π

c (s)]] (43)
= Ea∼π◦ν,s′∼p(·|s,a)[c(s, a, s

′) + γV π
c (s′)]− V π

c (s) (44)

= Ṽ π,ν
c (s)− V π

c (s). (45)

By theorem 3.10,

δπ◦νc = max
s
|Ea∼π◦νA

π
c (s, a)| (46)

≤ max
s

∣∣∣∣2Lϵ(psCm +
γCm

1− γ

)∣∣∣∣ (47)

= 2LϵCm

(
max

s
ps +

γ

1− γ

)
. (48)

Therefore, we can derive

V π◦ν
c (µ0)− V π

c (µ0) ≤
1

1− γ
max

s
|Ea∼π◦νA

π
c (s, a)|+

2γδπ◦νc

(1− γ)2
DTV[π

′(·|s)∥π(·|s)] (49)

=

(
1

1− γ
+

2γDTV

(1− γ)2

)
δπ◦νc (50)

≤ 2LϵCm

(
1

1− γ
+

4γLϵ

(1− γ)2

)(
max

s
ps +

γ

1− γ

)
. (51)

Note π is a feasible policy, i.e., V π
c (µ0) ≤ κ. Therefore,

V π◦ν
c (µ0) ≤ κ+ 2LϵCm

(
1

1− γ
+

4γLϵ

(1− γ)2

)(
max

s
ps +

γ

1− γ

)
. (52)

A.6. Proof of Theorem 4.2 – Bellman contraction

Recall Theorem 4.2, the Bellman operators Tπ, T ∗
c , T ∗

r are contractions under the sup-norm ∥ · ∥∞ and will converge to
their fixed points, respectively. In addition, the fixed point for T ∗

c is V π◦νMC
c = T ∗

c V π◦νMC
c , and the fixed point for T ∗

r is
V π◦νMR
r = T ∗

r V π◦νMR
r .

Recall the operators definitions, where Bϵ
p(s) is the ℓp ball constraint with size ϵ:

(TπV π◦ν
f )(s) =

∑
a∈A

π(a|ν(s))
∑
s′∈S

p(s′|s, a)
[
f(s, a, s′) + γV π◦ν

f (s′)
]
, f ∈ {r, c}, (53)
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(T ∗
c V π◦ν

c )(s) = max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

p(s′|s, a) [c(s, a, s′) + γV π◦ν
c (s′)] , (54)

(T ∗
r V π◦ν

r )(s) = max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

p(s′|s, a) [r(s, a, s′) + γV π◦ν
r (s′)] . (55)

We first prove that the Bellman policy operator Tπ is a contraction.

Proof. Denote fs′

sa = f(s, a, s′), f ∈ {r, c} and ps
′

sa = p(s′|s, a) for simplicity, we have:∣∣∣(TπUπ◦ν
f )(s)− (TπV π◦ν

f )(s)
∣∣∣ = ∣∣∣∑

a∈A
π(a|ν(s))

∑
s′∈S

ps
′

sa

[
fs′

sa + γUπ◦ν
f (s′)

]
(56)

−
∑
a∈A

π(a|ν(s))
∑
s′∈S

ps
′

sa

[
fs′

sa + γV π◦ν
f (s′)

] ∣∣∣ (57)

= γ
∣∣∣∑
a∈A

π(a|ν(s))
∑
s′∈S

ps
′

sa

[
Uπ◦ν
f (s′)− V π◦ν

f (s′)
] ∣∣∣ (58)

≤ γmax
s′∈S

∣∣∣Uπ◦ν
f (s′)− V π◦ν

f (s′)
∣∣∣ (59)

= γ
∥∥Uπ◦ν

f (s′)− V π◦ν
f (s′)

∥∥
∞, (60)

Since the above holds for any state s, we have:

max
s

∣∣∣(TπUπ◦ν
f )(s)− (TπV π◦ν

f )(s)
∣∣∣ ≤ γ

∥∥Uπ◦ν
f (s′)− V π◦ν

f (s′)
∥∥
∞,

which implies that: ∥∥(TπUπ◦ν
f )(s)− (TπV π◦ν

f )(s)
∥∥
∞ ≤ γ

∥∥V π◦ν2

f (s′)− V π◦ν2

f (s′)
∥∥
∞,

Then based on the Contraction Mapping Theorem (Meir & Keeler, 1969), we know that Tπ has a unique fixed point
V ∗
f (s), f ∈ {r, c} such that V ∗

f (s) = (TπV ∗
f )(s).

We then prove that the Bellman adversary effectiveness and stealthiness operators T ∗
f , f ∈ {r, c} is a contraction under the

sup-norm ∥ · ∥∞.

To finish the proof, we first introduce the following lemma:
Lemma A.3. Suppose maxx h(x) ≥ maxx g(x) and denote xh∗ = argmaxx h(x), we have:

|max
x

h(x)−max
x

g(x)| = max
x

h(x)−max
x

g(x) = h(xh∗)−max
x

g(x)

≤ h(xh∗)− g(xh∗) ≤ max
x
|h(x)− g(x)|.

(61)

Proof. ∣∣∣(T ∗
f V π◦ν1

f )(s)− (T ∗
f V π◦ν2

f )(s)
∣∣∣ = ∣∣∣ max

s̃∈Bϵ
p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
fs′

sa + γV π◦ν1

f (s′)
]

(62)

− max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
fs′

sa + γV π◦ν2

f (s′)
] ∣∣∣ (63)

=
∣∣∣γ max

s̃∈Bϵ
p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
V π◦ν1

f (s′)− V π◦ν2

f (s′)
] ∣∣∣ (64)

≤ γ max
s̃∈Bϵ

p(s)

∣∣∣∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa

[
V π◦ν1

f (s′)− V π◦ν2

f (s′)
] ∣∣∣ (65)

∆
= γ

∣∣∣∑
a∈A

π(a|s̃∗)
∑
s′∈S

ps
′

sa

[
V π◦ν1

f (s′)− V π◦ν2

f (s′)
] ∣∣∣ (66)

≤ γmax
s′∈S

∣∣∣V π◦ν1

f (s′)− V π◦ν2

f (s′)
∣∣∣ (67)

= γ
∥∥V π◦ν1

f (s′)− V π◦ν2

f (s′)
∥∥
∞, (68)
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where inequality (65) comes from Lemma A.3, and s̃∗ in Eq. (66) denote the argmax of the RHS.

Since the above holds for any state s, we can also conclude that:∥∥(T ∗
f V π◦ν1

f )(s)− (T ∗
f V π◦ν2

f )(s)
∥∥
∞ ≤ γ

∥∥V π◦ν2

f (s′)− V π◦ν2

f (s′)
∥∥
∞,

We then prove that the value function of the MC and MR adversaries V π◦νMC
c (s), V π◦νMR

r (s) are the fixed points for T ∗
c , T ∗

r .

Proof. Recall that the MC, MR adversaries are:

νMC(s) = arg max
s̃∈Bϵ

p(s)
Eã∼π(a|s̃) [Q

π
c (s, ã))] , νMR(s) = arg max

s̃∈Bϵ
p(s)

Eã∼π(a|s̃) [Q
π
r (s, ã))] . (69)

Based on the value function definition, we have:

V π◦νMC
c (s) = Eτ∼π◦νMC,s0=s[

∞∑
t=0

γtct] = Eτ∼π◦νMC,s0=s[c0 + γ

∞∑
t=1

γt−1ct] (70)

=
∑
a∈A

π(a|νMC(s))
∑
s′∈S

ps
′

sa

[
c(s, a, s′) + γEτ∼π◦νMC,s1=s′ [

∞∑
t=1

γt−1ct]

]
(71)

=
∑
a∈A

π(a|νMC(s))
∑
s′∈S

ps
′

sa [c(s, a, s
′) + γV π◦νMC

c (s′)] (72)

= max
s̃∈Bϵ

p(s)

∑
a∈A

π(a|s̃)
∑
s′∈S

ps
′

sa [c(s, a, s
′) + γV π◦νMC

c (s′)] (73)

= (T ∗
c V π◦νMC

c )(s), (74)

where Eq. (73) is from the MC attacker definition. Therefore, the cost value function of the MC attacker V π◦νMC
c is the fixed

point of the Bellman adversary effectiveness operator T ∗
c . With the same procedure (replacing νMC, T ∗

c with νMR, T ∗
r ), we

can prove that the reward value function of the MR attacker V π◦νMR
r is the fixed point of the Bellman adversary stealthiness

operator T ∗
r .
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B. Remarks
B.1. Remarks of the safe RL setting and stealthiness

Safe RL setting regarding the reward and the cost. We consider the safe RL problems that have separate task rewards
and constraint violation costs, i.e. independent reward and cost functions. Combining the cost with reward to a single scalar
metric, which can be viewed as manually selecting Lagrange multipliers, may work in simple problems. However, it lacks
interpretability – it is hard to explain what does a single scalar value mean, and requires good domain knowledge of the
problem – the weight between costs and rewards should be carefully balanced, which is difficult when the task rewards
already contain many objectives/factors. On the other hand, separating the costs from rewards is easy to monitor the safety
performance and task performance respectively, which is more interpretable and applicable for different cost constraint
thresholds.

(Reward) Stealthy attack for safe RL. As we discussed in Sec. 3.2, the stealthiness concept in supervised learning refers
to that the adversarial attack should be covert to prevent from being easily identified. While we use the perturbation set Bϵ

p

to ensure the stealthiness regarding the observation corruption, we notice that another level of stealthiness regarding the task
reward performance is interesting and worthy of being discussed. In some real-world applications, the task-related metrics
(such as velocity, acceleration, goal distances) are usually easy to be monitored from sensors. However, the safety metrics
can be sparse and hard to monitor until breaking the constraints, such as colliding with obstacles and entering hazard states,
which are determined by binary indicator signals. Therefore, a dramatic task-related metrics (reward) drop might be easily
detected by the agent, while constraint violation signals could be hard to detect until catastrophic failures. An unstealthy
attack in this scenario may decrease the reward a lot and prohibit the agent from finishing the task, which can warn the agent
that it is attacked and thus lead to a failing attack. On the contrary, a stealthy attack is to maintain the agent’s task reward
such that the agent is not aware of the existence of the attacks based on ”good” task metrics, while performing successful
attacks by leading to constraint violations. In other words, a stealthy attack should corrupt the policy to be tempted, since all
the tempting policies are high-rewarding while unsafe.

B.2. Remarks of the failure of SA-PPOL(MC/MR) baselines

The detailed algorithm of SA-PPOL (Zhang et al., 2020a) can be found in Appendix C.5. The basic idea can be summarized
via the following equation:

ℓν(s) = −DKL[π(·|s)||πθ(·|ν(s))], (75)

which aims to minimize the divergence between the corrupted states and the original states. Note that we only optimize
(compute gradient) for πθ(·|ν(s)) rather than π(·|s), since we view π(·|s) as the ”ground-truth” target action distribution.
Adding the above KL regularizer to the original PPOL loss yields the SA-PPOL algorithm. We could observe the original
SA-PPOL that uses the MAD attacker as the adversary can learn well in most of the tasks, though it is not safe under strong
attacks. However, SA-PPOL with MR or MC adversaries often fail to learn a meaningful policy in many tasks, especially for
the MR attacker. The reason is that: the MR attacker aims to find the high-rewarding adversarial states, while the KL loss
will make the policy distribution of high-rewarding adversarial states to match with the policy distribution of the original
relatively lower-rewards states. As a result, the training could fail due to wrong policy optimization direction and prohibited
exploration to high-rewarding states. Since the MC attacker can also lead to high-rewarding adversarial states due to the
existence of tempting polices, we may also observe failure training with the MC attacker.
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C. Implementation Details
C.1. MC and MR attackers implementation

We use the gradient of the state-action value function Q(s, a) to provide the direction to update states adversarially in K
steps (Q = Qπ

r for MR and Q = Qπ
c for MC):

sk+1 = Proj[sk − η∇skQ(s0, π(sk))], k = 0, . . . ,K − 1 (76)

where Proj[·] is a projection to Bϵ
p(s

0), η is the learning rate, and s0 is the state under attack. Note that we use the gradient
of Q(s0, π(sk)) rather than Q(sk, π(sk)) to make the optimization more stable, since the Q function may not generalize
well to unseen states in practice. The implementation of MC and MR attacker is shown in algorithm 2.

Algorithm 2 MC and MR attacker
Input: A policy π under attack, corresponding Q networks, initial state s0, attack steps K, attacker learning rate η,
perturbation range ϵ, two thresholds ϵQ and ϵs for early stopping
Output: An adversarial state s̃

1: for k = 1 to K do
2: gk = ∇sk−1Q(s0, π(s

k−1))
3: sk ← Proj[sk−1 − ηgk]
4: Compute δQ = |Q(s0, π(s

k))−Q(s0, π(s
k−1))| and δs = |sk − sk−1|

5: if δQ < ϵQ and δs < ϵs then
6: break for early stopping
7: end if
8: end for

C.2. PPO-Lagrangian algorithm

The objective of PPO (clipped) has the form (Schulman et al., 2017):

ℓppo = min(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip(
πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ)Aπθk (s, a)) (77)

We use PID Lagrangian (Stooke et al., 2020) that addresses the oscillation and overshoot problem in Lagrangian methods.
The loss of the PPO-Lagrangian has the form:

ℓppol =
1

1 + λ
(ℓppo + V π

r − λV π
c ) (78)

The Lagrangian multiplier λ is computed by applying feedback control to V π
c and is determined by KP , KI , and KD that

need to be fine-tuned.

C.3. Adversarial training full algorithm

Due to the page limit, we omit some implementation details in the main content. We will present the full algorithm and some
implementation tricks in this section. Without otherwise statement, the critics’ and policies’ parameterization is assumed to
be neural networks (NN), while we believe other parameterization form should also work well.

Critics update. Denote ϕr as the parameters for the task reward critic Qr, and ϕc as the parameters for the constraint
violation cost critic Qc. Similar to many other off-policy algorithms (Lillicrap et al., 2015), we use a target network for
each critic and the polyak smoothing trick to stabilize the training. Other off-policy critics training methods, such as
Re-trace (Munos et al., 2016), could also be easily incorporated with PPO-Lagrangian training framework. Denote ϕ′

r as the
parameters for the target reward critic Q′

r, and ϕ′
c as the parameters for the target cost critic Q′

c. Define D as the replay
buffer and (s, a, s′, r, c) as the state, action, next state, reward, and cost respectively. The critics are updated by minimizing
the following mean-squared Bellman error (MSBE):

ℓ(ϕr) = E(s,a,s′,r,c)∼D

[
(Qr(s, a)− (r + γEa′∼π[Q

′
r(s

′, a′)]))
2
]

(79)

ℓ(ϕc) = E(s,a,s′,r,c)∼D

[
(Qc(s, a)− (c+ γEa′∼π[Q

′
c(s

′, a′)]))
2
]
. (80)
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Denote αc as the critics’ learning rate, we have the following updating equations:

ϕr ←− ϕr − αc∇ϕr
ℓ(ϕr) (81)

ϕc ←− ϕc − αc∇ϕc
ℓ(ϕc) (82)

Note that the original PPO-Lagrangian algorithm is an on-policy algorithm, which doesn’t require the reward critic and cost
critic to train the policy. We learn the critics because the MC and MR attackers require them, which is an essential module
for adversarial training.

Polyak averaging for the target networks. The polyak averaging is specified by a weight parameter ρ ∈ (0, 1) and updates
the parameters with:

ϕ′
r = ρϕ′

r + (1− ρ)ϕr

ϕ′
c = ρϕ′

c + (1− ρ)ϕc

θ′ = ρθ′ + (1− ρ)θ.

(83)

The critic’s training tricks are widely adopted in many off-policy RL algorithms, such as SAC, DDPG and TD3. We
observe that the critics trained with those implementation tricks work well in practice. Then we present the full Robust
PPO-Lagrangian algorithm:

Algorithm 3 Robust PPO-Lagrangian Algorithm
Input: rollouts T , policy optimization steps M , PPO-Lag loss function ℓppol(s, πθ, r, c), adversary function ν(s), policy
parameter θ, critic parameter ϕr and ϕc, target critic parameter ϕ′

r and ϕ′
c

Output: policy πθ

1: Initialize policy parameters and critics parameters
2: for each training iteration do
3: Rollout T trajectories by πθ ◦ ν from the environment {(ν(s), ν(a), ν(s′), r, c)}N
4: ▷ Update learner
5: for Optimization steps m = 1, ...,M do
6: ▷ No KL regularizer!
7: Compute PPO-Lag loss ℓppol(s̃, πθ, r, c) by Eq. (78)
8: Update actor θ ←− θ − α∇θℓppo
9: end for

10: Update value function based on samples {(s, a, s′, r, c)}N
11: ▷ Update adversary
12: Update critics Qc and Qr by Eq. (81) and Eq. (82)
13: Polyak averaging target networks by Eq. (83)
14: Update adversary based on Qc and Qr

15: end for

C.4. MAD attacker implementation

The full algorithm of MAD attacker is presented in algorithm 4. We use the same SGLD optimizer as in (Zhang et al.,
2020a) to maximize the KL-divergence. The objective of the MAD attacker is defined as:

ℓMAD(s) = −DKL[π(·|s0)||πθ(·|s)] (84)

Note that we back-propagate the gradient from the corrupted state s instead of the original state s0 to the policy parameters
θ. The full algorithm is shown below:
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Algorithm 4 MAD attacker
Input: A policy π under attack, corresponding Q(s, a) network, initial state s0, attack steps K, attacker learning rate η, the
(inverse) temperature parameter for SGLD β, two thresholds ϵQ and ϵs for early stopping
Output: An adversarial state s̃

1: for k = 1 to K do
2: Sample υ ∼ N (0, 1)

3: gk = ∇ℓMAD(st−1) +
√

2
βηυ

4: sk ← Proj[sk−1 − ηgk]
5: Compute δQ = |Q(s0, π(s

k))−Q(s0, π(s
k−1))| and δs = |sk − sk−1|

6: if δQ < ϵQ and δs < ϵs then
7: break for early stopping
8: end if
9: end for

C.5. SA-PPO-Lagrangian baseline

Algorithm 5 SA-PPO-Lagrangian Algorithm
Input: rollouts T , policy optimization steps M , PPO-Lag loss function ℓppo(s, πθ, r, c), adversary function ν(s)
Output: policy πθ

1: Initialize policy parameters and critics parameters
2: for each training iteration do
3: Rollout T trajectories by πθ from the environment {(s, a, s′, r, c)}N
4: Compute adversary states s̃ = ν(s) for the sampled trajectories
5: ▷ Update actors
6: for Optimization steps m = 1, ...,M do
7: Compute KL robustness regularizer L̃KL = DKL(π(s)∥πθ(s̃)), no gradient from π(s)
8: Compute PPO-Lag loss ℓppol(s, πθ, r, c) by Eq. (78)
9: Combine them together with a weight β: ℓ = ℓppol(s, πθ, r, c) + βℓ̃KL

10: Update actor θ ←− θ − α∇θℓ
11: end for
12: ▷ Update critics
13: Update value function based on samples {(s, a, s′, r, c)}N
14: end for

The SA-PPO-Lagrangian algorithm adds an additional KL robustness regularizer to robustify the training policy. Choosing
different adversaries ν yields different baseline algorithms. The original SA-PPOL (Zhang et al., 2020a) method adopts
the MAD attacker, while we conduct ablation studies by using the MR attacker and the MC attacker, which yields the
SA-PPOL(MR) and the SA-PPOL(MC) baselines respectively.

C.6. Improved adaptive MAD (AMAD) attacker baseline

To motivate the design of AMAD baseline, we denote Pπ(s′|s) =
∫
p(s′|s, a)π(a|s)da as the state transition kernel

and pπt (s) = p(st = s|π) as the probability of visiting the state s at the time t under the policy π, where pπt (s
′) =∫

Pπ(s′|s)pπt−1(s)ds. Then the discounted future state distribution dπ(s) is defined as (Kakade, 2003):

dπ(s) = (1− γ)

∞∑
t=0

γtpπt (s),
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which allows us to represent the value functions compactly:

V π
f (µ0) =

1

1− γ
Es∼dπ,a∼π,s′∼p[f(s, a, s

′)]

=
1

1− γ

∫
s∈S

dπ(s)

∫
a∈A

π(a|s)
∫
s′∈S

p(s′|s, a)f(s, a, s′)ds′dads, f ∈ {r, c}
(85)

Based on Lemma 3.8, the optimal policy π∗ in a tempting safe RL setting satisfies:

1

1− γ

∫
s∈S

dπ
∗
(s)

∫
a∈A

π∗(a|s)
∫
s′∈S

p(s′|s, a)c(s, a, s′)ds′dads = κ. (86)

We can see that performing MAD attack in low-risk regions that with small p(s′|s, a)c(s, a, s′) values may not be effective –
the agent may not even be close to the safety boundary. On the other hand, perturbing π when p(s′|s, a)c(s, a, s′) is large
may have higher chance to result in constraint violations. Therefore, we improve the MAD to the Adaptive MAD attacker,
which will only attack the agent in high-risk regions (determined by the cost value function and a threshold ξ).

The implementation of AMAD is shown in algorithm 6. Given a batch of states {s}N , we compute the cost values {V π
c (s)}N

and sort them in ascending order. Then we select certain percentile of {V π
c (s)}N as the threshold ξ and attack the states that

have higher cost value than ξ.

Algorithm 6 AMAD attacker
Input: a batch of states {s}N , threshold ξ, a policy π under attack, corresponding Q(s, a) network, initial state s0, attack
steps K, attacker learning rate η, the (inverse) temperature parameter for SGLD β, two thresholds ϵQ and ϵs for early
stopping
Output: batch adversarial state s̃

1: Compute batch cost values {V π
c (s)}N

2: ξ ← (1− ξ) percentile of V π
c (s)

3: for the state s that V π
c (s) > ξ do

4: compute adversarial state s̃ by algorithm 4
5: end for

C.7. Environment description

We use the Bullet safety gym (Gronauer, 2022) environments for this set of experiments. In the Circle tasks, the goal is for
an agent to move along the circumference of a circle while remaining within a safety region smaller than the radius of the
circle. The reward and cost functions are defined as:

r(s) =
−yvx + xvy

1 + |
√

x2 + y2 − r|
+ rrobot(s)

c(s) = 1(|x| > xlim)

where x, y are the position of the agent on the plane, vx, vy are the velocities of the agent along the x and y directions, r is
the radius of the circle, and xlim specified the range of the safety region, rrobot(s) is the specific reward for different robot.
For example, an ant robot will gain reward if its feet do not collide with each other. In the Run tasks, the goal for an agent is
to move as far as possible within the safety region and the speed limit. The reward and cost functions are defined as:

r(s) =
√
(xt−1 − gx)2 − (yt−1 − gy)2 −

√
(xt − gx)2 − (yt − gy)2 + rrobot(s)

c(s) = 1(|y| > ylim) + 1(
√
v2x + v2y > vlim)

where vlim is the speed limit and gx and gy is the position of a fictitious target. The reward is the difference between current
distance to the target and the distance in the last timestamp.
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C.8. Hyper-parameters

In all experiments, we use Gaussian policies with mean vectors given as the outputs of neural networks, and with variances
that are separate learnable parameters. The policy networks and Q networks for all experiments have two hidden layers of
sizes (256, 256) with ReLU activation functions. We use a discount factor of γ = 0.995, a GAE-λ for estimating the regular
advantages of λGAE = 0.97, a KL-divergence step size of δKL = 0.01, a clipping coefficient of 0.02. The PID parameters
for the Lagrange multiplier are: Kp = 0.1, KI = 0.003, and KD = 0.001. The learning rate of the adversarial attackers:
MAD, AMAD, MC, and MR is 0.05. The optimization steps of MAD and AMAD is 60 and 200 for MC and MR attacker.
The threshold ξ for AMAD is 0.1. The complete hyperparameters used in the experiments are shown in Table 2. We choose
larger perturbation range for the Car robot-related tasks because they are simpler and easier to train.

Table 2: Hyperparameters for all the environments

Parameter Car-Run Dron-Run Ant-Run Car-Circle Dron-Circle Ant-Circle
training epoch 100 250 250 500 500 1000

batch size 10000 20000 20000 15000 15000 30000
minibatch size 300 300 300 300 300 300
rollout length 200 100 200 300 300 300

cost limit 5 5 5 5 5 5
perturbation ϵ 0.05 0.025 0.025 0.05 0.025 0.025

actor optimization step M 80 80 80 80 80 160
actor learning rate 0.0003 0.0002 0.0005 0.0003 0.0003 0.0005
critic learning rate 0.001 0.001 0.001 0.001 0.001 0.001

C.9. More experiment results

All the experiments are performed on a server with AMD EPYC 7713 64-Core Processor CPU. For each experiment, we use
4 CPUs to train each agent that is implemented by PyTorch, and the training time varies from 4 hours (Car-Run) to 3 days
(Ant-Circle). Video demos are available at: https://sites.google.com/view/robustsaferl/home

Here we evaluate the performance of MAD and AMAD adversaries by attacking well-trained PPO-Lagrangian policies
in Car-Run and Ant-Run task. We keep the policies’ model weights fixed for all the attackers for fair comparison. The
comparison is shown in Fig. 3. We vary the attacking fraction (determined by ξ) to thoroughly study the effectiveness of the
AMAD attacker. We can see that AMAD attacker is more effective because the cost increases significantly with the increase
in perturbation, while the reward is maintained well. This validates our hypothesis that attacking the agent in high-risk
regions is more effective and stealthy.

Figure 3: Reward and cost of AMAD and MAD attacker

https://sites.google.com/view/robustsaferl/home
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The experiment results of trained safe RL policies under the Random and MAD attackers are shown in Table 3. The
last column shows the average rewards and costs over all the 5 attackers (Random, MAD, AMAD, MC, MR). Our agent
(ADV-PPOL) with adversarial training is robust against all the 5 attackers and achieves the lowest cost. We can also see that
AMAD attacker is more effective than MAD since the cost under the AMAD attacker is higher than the cost under the MAD
attacker.

Table 3: Evaluation results of natural performance (no attack) and under Random and MAD attackers. The average column shows the
average rewards and costs over all 5 attackers (Random, MAD, AMAD, MC, and MR). Our methods are ADV-PPOL(MC/MR). Each
value is reported as: mean ± standard deviation for 50 episodes and 5 seeds. We shadow two lowest-costs agents under each attacker
column and break ties based on rewards, excluding the failing agents (whose natural rewards are less than 50% of PPOL-vanilla’s. We
mark the failing agents with ⋆.

Random MAD AverageEnv Method Reward Cost Reward Cost Reward Cost
PPOL-vanilla 328.34±118.08 20.67±18.65 178.21±81.31 28.27±49.12 280.42±87.0 42.41±13.74
PPOL-random 393.49±43.87 2.17±3.44 272.0±75.21 81.63±43.47 337.16±51.76 37.65±12.91

SA-PPOL(MAD) 397.71±20.87 0.13±0.5 366.64±25.82 0.93±2.73 394.92±15.33 28.57±1.75
SA-PPOL(MC) 383.92±19.5 0.0±0.0 288.28±25.2 0.0±0.0 376.5±7.09 26.61±2.39
SA-PPOL(MR) 370.71±47.18 0.54±1.94 308.8±22.49 0.1±0.7 366.16±37.08 22.08±4.6

ADV-PPOL(MC) 302.61±11.81 0.0±0.0 292.83±23.04 2.22±4.75 295.46±8.04 0.83±1.35

Car-Circle
ϵ = 0.05

ADV-PPOL(MR) 309.81±34.96 0.0±0.0 312.18±15.81 8.76±11.52 304.34±10.29 2.24±3.1
PPOL-vanilla 603.53±85.34 6.5±7.03 469.47±186.11 69.17±38.21 452.41±51.12 54.57±19.34
PPOL-random 585.71±108.76 6.87±33.14 456.66±155.61 58.6±42.59 442.21±44.87 41.21±24.18

SA-PPOL(MAD) 500.49±18.23 0.0±0.0 491.23±25.15 0.23±0.96 467.1±54.85 29.61±12.62
SA-PPOL(MC) 357.65±49.52 0.0±0.0 343.52±50.41 0.47±1.77 352.13±49.02 20.83±10.19
⋆ SA-PPOL(MR) 187.81±129.74 19.18±53.92 180.62±122.42 15.06±41.66 191.66±123.83 23.4±21.63
ADV-PPOL(MC) 359.45±26.63 0.0±0.0 325.92±46.12 4.22±13.82 358.74±35.95 2.79±4.97

Drone-Circle
ϵ = 0.025

ADV-PPOL(MR) 352.77±51.5 0.0±0.0 331.06±63.45 4.4±14.96 341.8±37.13 2.37±6.06
PPOL-vanilla 152.98±21.02 0.9±3.59 157.36±22.76 5.27±10.27 160.93±17.15 17.69±7.0
PPOL-random 159.02±23.93 3.13±8.15 155.34±27.44 2.8±5.47 153.63±13.59 10.56±4.41

SA-PPOL(MAD) 140.21±39.95 4.6±21.18 146.38±34.43 1.47±5.19 152.47±22.08 14.4±8.09
⋆ SA-PPOL(MC) -0.38±1.57 0.0±0.0 -0.73±1.88 0.0±0.0 -0.3±0.8 0.0±0.0
⋆ SA-PPOL(MR) -0.53±2.07 0.0±0.0 -0.89±2.25 0.0±0.0 -0.66±1.09 0.0±0.0
ADV-PPOL(MC) 131.22±18.72 0.3±1.29 132.95±18.85 0.03±0.18 132.55±14.1 1.86±2.51

Ant-Circle
ϵ = 0.025

ADV-PPOL(MR) 126.91±23.59 0.73±2.93 134.82±19.38 1.63±4.37 131.35±13.22 1.02±1.56
PPOL-vanilla 553.61±2.81 19.47±6.19 504.29±9.71 0.49±5.94 567.75±3.38 58.84±4.68
PPOL-random 555.24±1.89 0.92±1.17 542.84±2.2 2.61±2.44 561.68±1.52 53.28±0.49

SA-PPOL(MAD) 545.86±2.11 0.0±0.0 548.11±2.2 0.0±0.0 553.52±1.62 1.17±1.31
SA-PPOL(MC) 540.36±2.83 0.0±0.0 522.8±3.1 0.0±0.0 549.06±2.55 0.26±0.44
SA-PPOL(MR) 539.04±1.31 0.0±0.0 529.38±1.91 0.0±0.0 546.74±1.12 4.07±5.73

ADV-PPOL(MC) 521.85±3.2 0.0±0.0 504.25±4.23 0.0±0.0 528.93±2.74 0.01±0.04

Car-Run
ϵ = 0.05

ADV-PPOL(MR) 522.15±2.31 0.0±0.0 504.16±3.12 0.0±0.0 529.41±2.36 0.02±0.05
PPOL-vanilla 346.59±2.93 17.33±12.63 348.19±33.21 41.96±28.11 347.52±5.44 37.31±5.46
PPOL-random 342.68±3.16 3.72±5.6 269.88±14.33 1.66±8.4 321.03±8.03 15.11±6.72

SA-PPOL(MAD) 306.73±20.71 1.9±4.8 323.19±24.66 29.19±23.81 296.86±53.06 25.79±5.5
⋆ SA-PPOL(MC) 151.69±19.97 0.01±0.16 77.66±49.01 0.0±0.0 155.15±11.8 2.67±2.11
⋆ SA-PPOL(MR) 0.09±0.29 0.0±0.0 0.05±0.28 0.0±0.0 0.15±0.29 0.0±0.0
ADV-PPOL(MC) 277.23±6.89 0.0±0.0 264.26±12.98 0.12±0.69 275.86±9.33 2.77±3.78

Drone-Run
ϵ = 0.025

ADV-PPOL(MR) 235.17±20.24 0.0±0.0 230.04±24.4 0.0±0.0 233.9±25.83 1.11±1.29
PPOL-vanilla 676.14±12.12 1.89±1.77 672.38±12.71 3.59±2.66 678.37±13.99 27.09±5.09
PPOL-random 671.8±14.45 1.52±1.2 667.73±13.6 2.09±1.43 669.79±8.59 14.37±2.12

SA-PPOL(MAD) 659.01±13.66 0.55±0.8 658.28±13.9 0.75±0.98 665.21±9.41 22.52±4.88
SA-PPOL(MC) 575.82±27.89 3.44±3.51 572.12±27.95 3.17±3.47 584.98±25.62 10.06±4.23
⋆ SA-PPOL(MR) 68.46±93.11 5.27±4.46 77.65±79.75 5.17±4.5 77.83±67.63 5.58±4.34
ADV-PPOL(MC) 599.93±18.22 0.0±0.0 597.65±18.61 0.0±0.0 618.73±17.7 0.41±0.24

Ant-Run
ϵ = 0.025

ADV-PPOL(MR) 618.62±25.38 0.31±0.6 615.31±23.5 0.41±0.68 625.14±21.95 1.46±0.74


