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Abstract
Autonomous racing represents a uniquely chal-
lenging control environment where agents must
act while on the limits of a vehicle’s capability in
order to set competitive lap times. This places the
agent on a knife’s edge, with a very small margin
between success and loss of control. Pushing to-
wards this limit leads to a practical tension: we
want agents to explore the limitations of vehicle
control to maximise speed, but inadvertently go-
ing past that limit and losing control can cause
irreparable damage to the vehicle itself. We pro-
vide a model predictive control (MPC) baseline
that is able to, in a single lap, safely adapt to
an unseen racetrack and achieve competitive lap
times. Our approaches efficacy is demonstrated in
simulation using the Learn To Race Challenge’s
environment and metrics. (Herman et al., 2021)

1. Introduction
Racing is a hallmark of automotive innovation. Competitors
and manufactures alike push the very limits of physical
capability and design to edge out the slightest of advantages
over their opponents. Gains at the top level of motorsport
are often realised in hundredths of seconds, but can have
significant impact on the drivability, safety and efficiency of
road cars.
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Mercedes-Benz lists a slew of technical innovations used
in their road cars that are directly a result of their Formula
One participation. (Colquhuon, 2021) In this spirit, rac-
ing leagues for vehicles piloted by autonomous systems
have started across the world. (Balaji et al., 2019; O’Kelly
et al., 2019; Goldfain et al., 2018; Srinivasa et al., 2019;
Wischnewski et al., 2022) Competitors vie to create the best
platforms and automated control in the never ending quest
for faster lap times. However, as motorsport hall of fame
inductee Sir Stirling Moss advised, ”To achieve anything
in this game you must be prepared to dabble in the bound-
ary of disaster.”. This presents a natural conflict. In our
quest for speed, the edge of disaster is flirted with and often
indulged, causing catastrophic damage to valuable racing
platforms. (Tingwall, 2021; Fingas, 2021) It is therefore
desirable to design control systems that, much like a human
drivers, progressively explore the physical limits of the plat-
form in a way that minimises risk. To this end, the Learn To
Race Challenge encourages competitors to not only develop
autonomous control capable of racing pace, but penalises
systems for unsafe behaviour. (Herman et al., 2021) In ad-
dition to a focus on safety, the challenge limits available
information from the environment and tests the few-shot
learning capability of systems. Observations from the sim at
evaluation time are images from a predefined RGB camera
system and the current vehicle speed. This requires systems
to infer spatial information about the vehicles position exclu-
sively from visual information. Systems adaptability to new
tracks is evaluated by providing a one hour practice session
where the system is able to drive around an unseen track.
During this practice window, safety infraction penalties are
accumulated while any automatic adaptions are made by the
autonomous system to adapt to the new environment. Three
factors: safety, limited observation and few-shot generalisa-
tion provide a uniquely challenging environment to develop
autonomous control.
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Although the challenge encourages submissions to explore
systems leveraging safe reinforcement learning our initial
efforts where directed toward producing a baseline of more
tradition approaches to autonomous control which could be
built upon. Unfortunately the majority of these techniques
rely on knowledge of the track layout and accurate locali-
sation around the circuit; two things this challenge restricts.
As a result we provide details of the adaption of several con-
trol solutions tailored to the restrictions specific to the 2022
Learn To Race Challenge. These include a naive Follow-
The-Gap driver, a model predictive controller (MPC) that
uses local perception and a MPC based system that uses
localisation and mapping to aid control (MPC++). Our base-
line MPC solution achieved competitive results in the Learn
To Race Challenge. The implementation of MPC++ was
finalised after the conclusion of the submission deadline and
therefore was not officially in contention.

2. Related work
Our approach to solving the autonomous racing problem
was to follow the simple and effective autonomous driving
pipeline of perception, mapping, localisation, planning, and
control. Initially we worked at solving and testing each of
these problems independently to build an entire working
system. With this modular approach, we could improve
and iterate on each subsystem without having to rebuild the
entire system, like in end-to-end control systems.

The perception module was inspired by the work of (Loquer-
cio et al., 2021), which presented the benefits of abstracting
perceptions from raw sensor inputs to a simplified and scene
independent format. Our control systems were inspired
by (Liniger et al., 2017; Kabzan et al., 2019) which utilise
model predictive controllers for autonomous racing. Lin-
iger’s MPC has been used to both control vehicle behaviour
at the limits of grip at 1/43rd scale and in Formula SAE
races. (Liniger et al., 2014; Kabzan et al., 2019) Augment-
ing these controllers with learning has been explored in
(Kabzan et al., 2019). They achieve improved dynamic con-
trol using a machine learning model to predict refinements to
MPC output. In the work explored the vehicle’s location is
known or there are discrete visual markers present—such as
traffic cones—that enable robust point matching; producing
high accuracy localisation.

In this challenge we must handle vehicle localisation with
sparse visual features, see Figure 1, and construct our own
map of the circuit. This leads to more uncertainty in plan-
ning and control than these systems are capable of dealing
with in their current form. Ultimately, a successful solu-
tion to this challenge must be built with this uncertainty in
localisation, planning and control in mind.

(a) (b)

(c) (d)

Figure 1. Image captures showing the visual features around An-
glesey from the vehicles front camera (a) after turn 1 (b) after turn
2 (c) after turn 5 (d) before turn 6

3. Methodology
In this section we outline the inner workings of our au-
tonomous racing agent. We first outline a naive Follow-The-
Gap agent in Section 3.1 which achieved a top 10 position in
stage-one of the competition. Then we provided details of a
MPC based agent in Section 3.2 which achieved competitive
results in stage-two of the 2022 Learn To Race Challenge.
Additionally, a final system denoted as MPC++ which was
not submitted for evaluation is presented in Section 3.3.

3.1. Follow-The-Gap Driver

As an initial pilot test for control, based on our road seg-
mentation model, we implemented a naive Follow-The-Gap
driver. This controller uses the driveable area segmenta-
tion mask of the road in front of the vehicle projected onto
the ground plane to plan a straight line trajectory while
maintaining a safe distance from all track limits, see Fig-
ure 3(b). Acceleration and steering inputs to the vehicle
are set proportionately to the length and angle of the tra-
jectory respectively. The constants of proportionality used
for this driver where manually tuned until desirable driving
behaviour was achieved. To extract a representation for the
track limits in front of the vehicle we developed a Perception
module.

3.1.1. PERCEPTION

Perception is responsible for processing camera images into
a representation of the local limits of the road. This ab-
straction to track limits is used by all other modules. To
achieve this a combination of deep learning and handcrafted
post-processing is used. Using ground truth segmentation
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maps provided by the simulation two different segmentation
models where trained. For the Follow-The-Gap and MPC
solutions a Feature Pyramid Network (Lin et al., 2017) with
an EfficentNet (Tan & Le, 2019) backbone was used. In
MPC++ we substituted this for Deeplabv3+ (Chen et al.,
2018) with a ResNet-18 (He et al., 2015) encoder. Both
where trained to classify whether a given image pixel be-
longs to the drive-able portion of the race track or not. Mod-
elling is preformed using PyTorch (Paszke et al., 2019) on
a bespoke dataset we collected from the simulation envi-
ronment. For more details on model training see Appendix
A This produces a binary mask representing the drive-able
region in front of the vehicle. Three sets of points are ex-
tracted from the mask that are representative of the left and
right track limits in addition to a set of points along the
centre of the drivable area. For the left and right track limits
the left and right most pixels classified as drive-able for each
row in the mask are selected. Similarly, centreline points
are extracted by selecting the middle pixel in a given row
classified as drivable.

Track limits are then projected from image coordinates
(u, v) onto the ego-centric ground-plane (xego, yego), where
xego and yego represent lateral and longitudinal displacement
from the vehicle centre respectively. We utilise a homogra-
phy matrix to map points from camera to ego-centric vehicle
coordinate frames:

s
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1

 = H3×3 ×

uv
1


To estimate the homography matrix we must have a mini-
mum of four corresponding points between the camera and
ground plane. Using the known camera parameters from the
simulation environment the intrinsic and extrinsic camera
calibrations can be found:

s

uv
1

 =

f 0 cx
0 f cy
0 0 1

×

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1


where cx and cy are the centre positions of the image plane
in pixels. The focal lengths fx and fy are calculated using
the field of view and the image size:

f =
w

2× tan(FOVh/2)

where w is the image width in pixels and FOVh is the
horizontal field of view.

Points extracted and transformed using this technique are
variable in both density and number. For example, track lim-
its closer to the camera have more points compared to those
further away. This method also assumes that the ground and

Figure 2. An example of the perception module processing a cam-
era image into a road segmentation mask, then extracting track
points from the mask and smoothing the extracted track points.

camera plane remain fixed relative to one another. Addi-
tionally, representing track curves on a squared grid results
in jagged edges in extracted lines. These factors can mean
even a perfect track segmentation can have errors induced
from vehicle movement and track elevation changes leading
to problems further down the pipeline. To remedy some of
these factors, a third order polynomial is fit to each set of
extracted points separately and new points are recalculated
from the resulting equation. Figure 2 shows an example of
how the perception system translates images into a repre-
sentation of the local track. These three sets of points—left,
right and central—are the representations used by the other
subsystems.

3.2. MPC

For this solution, the Follow-The-Gap controller is replaced
with one using MPC. Here we detail how the control prob-
lem can be framed as an optimisation problem and the var-
ious modifications required to enable operation with local
perceptions. Herein we refer to the part of the system re-
sponsible for translating track-limit perceptions to steering
and acceleration inputs.

3.2.1. CONTROL

We modify the off the shelf MPC controller (Mats Steinweg,
2020) which utilises the quadratic program solver (Stellato
et al., 2020). This takes a representation of driveable area in
ego-centric vehicle coordinates from the front cameras (Sec
3.1.1) i.e. the local road view, and outputs a series of control
inputs. The resulting trajectory minimises local segment
time and deviation from a reference path while abiding by
safety and vehicle constraints.
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(a) (b) (c)

Figure 3. (a) Input camera image (b) Extracted track limits (black) and predicted path (red) from Follow-The-Gap driver control (c)
Extracted track limits (black) and predicted path (red) from MPC control

As track limit perceptions are in a ego-centric coordinate
frame we convert these to a spatial representation. The spa-
cial representation used contains the curvature, κ = 1/r,
of the path, distance between each of the points, and the
track width. Using this information, a path that minimises
heading error, displacement error, and time taken to travel
between points is found. Each error term has an associated
weight which is used to tune the vehicle’s behaviour. For
example, by weighting time highly paths which do not fol-
low the reference path exactly become permissible. This
allows deviation from the centre of the racetrack, prioritising
paths that are more time efficient and therefore faster. Al-
ternatively, if we increase the weighs for displacement and
heading error the vehicle will follow the detected centreline
closely, at the expense of speed.

Calculating control can be broken into two main steps: First,
a desired speed profile is calculated which constraints the
maximum and minimum acceleration and lateral acceler-
ation based on track curvature. Second, vehicle yaw and
velocity is optimised for each reference track point. The
yaw error, track error and time are constrained such that
only physically possible solutions are produced. Formally,
the optimal control problem is defined as follows:

minimize
v,ψ

γp

i=n∑
i=0

||pi − ref pi||+ γtT

+γv||∆v||+ γs||∆s||
subject to vn ≤ vend,

|pi − ref pi| ≤
w

2
,

vmin ≤ vi ≤ vmax,

smin ≤ si ≤ smax,

v0 = v,

ψ0 = 0

where γp, γt, γv and γs are the weights for position error
at each control step, overall time, magnitude of velocity
change and magnitude of steering change respectively, p
is the vehicle position and ref p is the desired position, T
is the time to complete the trajectory, v, s and ψ are the
vehicle’s velocity, steering angle and yaw, w is the track
width, vend is a maximum terminal velocity and n is the
number of steps in the time horizon.

Once the optimisation problem is solved steering angles are
computed using a bicycle model:

δ = arctan(ψ × wheelbase)

Acceleration inputs are formulated as the difference between
the desired and reference speed:

a =
vref − v

β

where β can be changed to modify how aggressively acceler-
ation is changed. Figure 3 shows an example of the vehicle
trajectories calculated using the Follow-The-Gap and MPC
based methods.

3.3. MPC++

This version of our system enables control to take into ac-
count larger context than what is available from local per-
ceptions. Steering inputs remain entirely dependant on the
local track limit perception. However, velocities can now be
set with a look ahead much further than is often available
locally and in a way that is robust to potentially erroneous
perceptions. To do this we add two additional modules re-
sponsible for localisation and mapping. Mapping is done in
the one hour practice session available prior to racing. The
resultant map is then used to localise the vehicle while rac-
ing. Once vehicle position is approximately known control
of velocity is ceded to references calculated from the map.
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Figure 4. Mapping results from our agent at training time with computed max reference speeds

3.3.1. MAPPING

Our agent has no knowledge of circuit layout prior to set-
ting a lap time. A mapping algorithm is used to create a
representation of the track which has two key benefits. It
enables the location of the vehicle within the map to be
estimated using the Localisation module, detailed in Section
3.3.2, and allows for pre-computation of reference veloci-
ties informed by the global structure of the circuit. In cases
where the Perception module’s line-of-sight is limited or
observations are of low quality, these reference velocities
provide an alternative signal to set the vehicle’s speed.

To create this map, during practice, the MPC controller with
conservative control constrains and a speed limit of 20ms−1

is used to circumnavigate the track. These control settings
are set such that the agent will safely complete a full lap
and move slowly enough that detailed track limit points
are able to be collected. Points used to describe the track
limits can be gathered over the course of one or more laps.
This results in two collections of points corresponding to
the outside and inside limits of the circuit. As these points
are collected via the perception module, overlapping and
duplicate points are appended sequentially; resulting in a
out of order set. To recover ordering between sequential
points the Pyconcorde traveling salesperson problem solver
was used. (Vankerschaver, 2017) The now ordered points
are smoothed using a Savitzky–Golay filter. (Savitzky &
Golay, 1964) From the pair of track limits a centreline is also
interpolated. In our case, the pair of track limit’s detection
spacing varies over the course of collection, so bipartite
matching of inside and outside points was not possible.
Instead, track limit points are matched to each other by
finding their closest point on the opposing set of points.
Once matched, the pair’s midpoint is used as a centreline
point. Using the centreline a series of reference velocities

for the circuit are calculated which take into account the
maximum lateral acceleration and track curvature. To do
this we used the velocity profile optimisation, discussed in
Section 3.2.1, to calculate the reference velocity assigned
to each centreline point. Velocity profile optimisation takes
into account the vehicle’s maximum lateral acceleration,
acceleration and braking capabilities. The results of this
processes are shown in Figure 4.

3.3.2. LOCALISATION

In order to utilise the reference speeds calculated for each
position around the circuit, we need to know where the
vehicle is. To estimate the vehicle’s track position our lo-
calisation module uses track limit detections and a particle
filter. More specifically, particles begin uniformly spread
through the previously computed circuit map, see Section
3.3.1. At each time step, particles positions are progressed
using vehicle control input, a dynamics model and random
noise:

xt+1 = xt + ẋ× dt,

ẋ =

 v × cos(ψ)
v × sin(ψ)
v × tan(δ)/b


where x and b are the vehicle’s pose and wheelbase respec-
tively.

Observations in the form of track limit detections from the
Perception module are transformed to each particle’s loca-
tion. Using a k-d tree particle’s closest points in the map are
found and a local section of the map’s track limits in front
of the particle are extracted. These points are lifted from
the map sequentially under the assumption that both the
observed track limits and map points are equally spaced. In
practice this is not always the case. We ensure the observed
track points are over sampled and then uniformly drop points
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until the observation and map densities are equivalent. The
ℓ2 error between observed detections and map points is
evaluated and used to score and remove particles.

Particles are removed from the filter if they: they fall out
from within the track limits of if the track limit matching
score is too low. New particles are generated by resampling
particles in the filter. Each particle is sampled with a prob-
ability proportional to their associated score. A particle’s
score is calculated by normalising the value of a normal
distribution’s probability density function evaluated at the
observation error, E ∼ N(0, σ). This manifests as parti-
cles with no error—at the mean of the distribution–being
assigned the highest score of 1, with scores decreasing as
error increases. The rate of score decrease is negatively cor-
related with σ. This leads to low observation error particles
being resampled more frequently than their high error coun-
terparts. Additionally, each particle’s score is used to weight
its overall contribution to the estimated position of the ve-
hicle. These two factors enable the filter to progressively
refine the collection of particles it maintains; converging
to an estimate of the vehicles location on the circuit. To
detect when the filter has converged we use a threshold on
the maximum distance a single particle can be away from
the current estimated position. Once all particles are within
this distance we consider the filter to be converged. Once
converged, the estimated position can be used to look-up
pre-calculated reference velocities from the map. These
reference velocities enable vehicle control to preempt the
circuit’s profile further into the future than what is visually
available from its cameras.

4. Evaluation
To compare different control systems lap times set on three
different racetracks where used. Thruxton and Anglesey
National where provided by the competition organisers for
local testing and development. Examples of the track’s
layouts can be seen in Figure 4. Las Vegas Outfield North
was tested on via submission to an evaluation server. Laps
are timed with the vehicle starting on the start-finish line
accelerating from a stand still.

5. Results
Evaluation of each outlined system of control are shown in
Table 1. All control systems explored in this work recorded
no safety infractions. Due to the competition shutting its
evaluation servers we where unable to evaluate MPC++ on
the Las Vegas racetrack.

Lap Times (m:s:ms)
Driver Thruxton Anglesey Las Vegas

Follow-The-Gap 2:13:835 1:20:187 1:45:388
MPC 1:55:708 0:53:837 1:19:148
MPC++ 1:38:950 0:44:601 -
Tuned MPC++ 1:29:516 0:43:204 -
Tuned MPC++ No Delay 1:29:136 0:42:002 -

Table 1. Observed lap times around the three racetracks for dif-
ferent versions of our solution. Follow-The-Gap is provided as a
naive control baseline which was submitted for stage one. MPC
uses local perceptions only, submitted for stage two. MPC++ uses
localised pace notes with parameters that work across all tracks.
Tuned MPC++ is manually tuned to be faster around each track
with settings that may not generalise to other tracks. No Delay
indicates that the 10Hz input/observation frequency is turned off.

6. Discussion
Follow-The-Gap driver’s naive control design is super-
seded, −18.127s (13.5%), −26.350s (32.9%) and −26.24s
(24.9%) on Thruxton, Anglesey and Las Vegas respectively,
by the MPC control using local perceptions to guide its tra-
jectory. The difference in lap time between the two systems
is observed to be correlated with the number of tight corners
in a given racetrack. In the collection of tracks used Thrux-
ton contains more sweeping corners with very few that are
tight and slow. Conversely, Las Vegas contains several tight
chicanes and hairpins. Due to the Follow-The-Gap driver
projecting a straight line through the segmentation mask,
trajectories that deviate significantly from this template will
be harder to achieve, Figure 3. In the case of a sweeping
corner or long straight this would not be much of an issue.
However, as is the case of approximating a circle from a
polygon, maneuvering through a tight hairpin requires many
small piece-wise linear trajectories. As the controller sets its
speed according to the length of the trajectory this has the
effect of jagged and slow control through such corners. As
the MPC controller is able to plan control inputs at multiple
control points along a given section of track, steering and
acceleration is much smoother in comparison.

Despite this improvement the local perception MPC con-
troller suffers from a lack of foresight. As it is restricted to
using its camera to predict a path through the up coming
section of road, it is unable to deal with situations such as a
crest in the middle of a long straight. Ideally in such a situa-
tion the vehicle would continue without adjusting its input
with the knowledge that the straight continues over the crest.
The local MPC controller however needs to slow down in
anticipation that there may be the sharpest turn on the track
beyond the crest, as it has no understanding of its position
and track geometry. Quantitatively we demonstrate that the
ability to look ahead provides a significant improvement
over the MPC using local perceptions. MPC++ creates and
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(a) (b) (c)

Figure 5. Each image represents a pair of ground truth and estimated local track limits from the localisation module. Ground truth
track limits are shown in black and estimations in red. (a) Localisation along a straight (b) Reaching a corner early (c) Error in yaw
approximation

localises to a map of the circuit. By adding this an improve-
ment of −16.758s on Thruxton and −9.236s Anglesey was
observed; a reduction in lap time of 34.885% and 35.586%
respectively when compared to follow-the-gap.

The results shown for MPC++ in Table 1 are for general
optimisation parameters that work well on both Thruxton
and Anglesey. To demonstrate the potential for an auto-
mated adaption system we manually tuned two separate
sets of parameters specific to either Thruxton or Anglesey,
denoted tuned MPC++. With limited experimentation, fur-
ther improvements of −9.434s on Thruxton and −1.397s
on Anglesey were found. Overall, a tuned MPC++ is capa-
ble of 44.7% and 38.2% faster laps around Thruxton and
Angelesey respectively. We think that by tuning MPC++ the
behaviour around longer sweeping corners was improved
while tighter corners were still challenging to perceive and
control around. Since Thruxton has more of the former we
see a larger improvement in lap time relative to Anglesey.
Automation of this tuning via learning or model refinement
is therefore recommend as a line of future enquiry.

6.1. Runtime analysis

Although we are limited to 10Hz control and perception this
assumes that our model and calculations are instantaneous.
This is because the observation delay is called as a sleep
function in the evaluation server’s code base. For example if
our code takes 0.04s to run this would result in a control fre-
quency of 7Hz. Without this delay control control could be
calculated and applied at 25Hz. For this reason we focused
on our code having the lowest run time possible as this has
a great effect on the controllers ability to correct oversteer
and poor control inputs. One step of the MPC++ controller
takes 0.025s and has the ability to run at 40Hz. We found
that since the sleep function runs on a separate thread we
can run calculations during this time which means we were
able to execute at 9.5Hz with observation delay enabled.

6.2. Limitations of our system

We observed that the detected track limits from the percep-
tion system (Section 3.1.1) had large effects on the control
output and performance of the vehicle. Due to using a static
transformation from camera to ground plane error is intro-
duced as the projection changes when the vehicle squats,
rolls, or dives. This also occurs when the elevation of the
track changes, which occurs on several occasions around
the Thruxton circuit. This could lead to the track limits
spanning much further ahead of the vehicle than they are,
resulting in the vehicle accelerating faster than what is safe.
Additionally, localisation accuracy is impacted as calcula-
tion of the error between the observed track limits and the
map’s is used in particle scoring and elimination.

Our system uses dead-reckoning and abstracted visuals for
localisation. This allows the system to go faster through
straights by knowing the track ahead, see Figure 5(a). Since
there we where unable to include meaningful visual features
as part of the localisation we abstracted camera images to a
track limit representation. The lack of visually salient fea-
tures is discussed in Section 6.3. Unfortunately, Cartesian
points provide much less information about match quality
than re-observations of a know visual landmark. This causes
our localisation module to lack precision when approaching
and travelling through corners, see Figure 5(a,b). If in the
future visual features such as barriers, signs, grandstands,
buildings, and trees are added revisiting SLAM algorithms
would likely lead to significant improvements in localisation
accuracy.

Due to this lack of accuracy we where unable to use the
mapping and localisation module to drive from directly. For
these reasons our control is restricted to only the scene in
which the perception module provides. In this challenge we
do not have access to GPS localisation, inertial measurement
unit data, or wheel speed data. This adds a considerable
challenge for estimating if a given control input has pro-
duced the anticipated vehicle movement. The particle filter
our localisation module relies on only uses knowledge of the
observed track limits, control inputs, predicted behaviour,
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and that the vehicle has not left the track. For this reason
we must have a considerable amount of uncertainty into the
particle filter for it to converge and maintain localisation.

In its current form the MPC++ solution is quite fragile. This
is due to a combination of parameters that are required to be
tuned and interplay with one another in unexpected ways.
One such example, discovered during experimentation for
this work, is that the speed at which mapping is done has
a significant impact on map quality and thus reference ve-
locities, localisation, and consequently control. We believe
this can be addressed with map post-processing that would
ensure consistency. Many of the parameters used to con-
figure localisation and the MPC solver have been manually
tuned based on empirical observation. It is not necessarily
clear why these weights are the values which result in de-
sirable behaviour and understanding the range and scale of
values is often a process of trail and error. Behaviour of the
MPC solver is also not consistent under a uniform scaling
of all term weights; indicting the optimisation problem is
non-linear. Due to this, we wish to formulate the tuning of
these parameters as a safe learning problem or use the MPC
as a control prior for a deep-controller.

Presently, MPC speed controls are not used once the vehicle
has been localised. Ideally, map reference velocities would
be used to inform the MPC so that control inputs are pre-
dicted in advance. This ensures that the desired velocity
is achieved at its associated track position, rather that an
requested when the vehicle is at that position. As an approx-
imation to this desired behaviour, reference speeds given to
the vehicle are from points in the map a fixed distance ahead
of the vehicle’s current position. This ensures acceleration
inputs are applied prior to a given point, enabling transition
to the velocity required at the future point.

6.3. Limitations of the challenge

There where some aspects of how the challenge was setup
that caused friction during the development of solutions we
would like to address in the spirit of review and refinement.
Somewhat arbitrarily both receiving observations from the
simulation and providing control input to the vehicle was
limited to 10Hz. Although it is understood that synchronisa-
tion of input and output is important we believe it would be
better to leave this task in the hands of competitors. Primar-
ily our concern stems from the limitations around control
input which prevent the use of granular inputs to make
smoother changes to the vehicle’s state. By limiting input
and observation to 10Hz each time control is set it is used by
the vehicle for the next 100ms, preventing the use of a PID
controller or other such method of smoothing inputs to the
car. This compounds when running on the prescribed evalu-
ation server, which executes both simulation and solution
code slower than our development machines, as if a control

calculation takes longer than 100ms to run we must wait
until the next 100ms window to update observations and
control. Not only does this produce behaviour that rapidly
jerks the vehicle, it does not provide sufficient time for con-
trol solutions to correct oversteer. On this note, modern
car safety systems detect and respond to loss of traction
using on-board sensors. (Ivanov et al., 2015) When operat-
ing vehicles at racing pace it is crucial to control oversteer
when cornering and apply threshold braking; both of which
require an understanding of traction limits. It is therefore
hard to justify the challenge’s decision to restrict access
to this information, given its ultimate goals of safe racing.
The limited control over the camera’s used on the vehicle
also created tension that was somewhat remedied by the
introduction of the multi-camera league. We do understand
that the positioning of the camera’s maybe limited by the
vehicle’s design, but we see no reason that the resolution,
rotation and lens type should be fixed. By allowing camera
parameter customisation specific solutions could tune cam-
eras for specific goals. For example, if the camera’s goal is
to observe track limits a developer might prioritise a wider
field-of-view, minimise capturing vehicle bonnet and sky.
Some potential solutions where not able to be explored due
to the nature of the simulation environment.

Initially we gravitated towards utilising simultaneous locali-
sation and mapping (SLAM) algorithms for our localisation.
We found that off the shelf monocular SLAM algorithms
failed within the competition constraints. This is likely due
to the limited visual features, especially close to the vehi-
cle, and limited field of view, refer to Figure 1 and Figure
2. This limitation effects both the diversity of potential so-
lutions and a significant gap between solutions developed
for the simulation versus those that are possible in reality.
Finally, we would like to see the criteria of exceeding the
track limits expanded. Currently vehicles may clip the white
line with a single wheel and are considered to have commit-
ted a safety infraction. Maximising track limits is a corner
stone of racing enabling significant gains in lap time. This
practice decreases the cornering radius of turns enabling
them to be taken with less lateral acceleration. In our view
this is ultimately safer then taking a different line with a
tighter radius, requiring harsher control inputs. Due to this
we recommend the infraction be changed to accommodate
the use of curbs on the track and allow for situations where
two wheels maybe outside of white lines by some margin.

6.4. Future work

Our baseline can achieve competitive results on the supplied
tracks under the simulation constraints. Much like our de-
velopment thus far there are modules and improvements we
would like to add in our quest to achieve optimal lap times.

Addressing the current limitations of our system would be
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first and foremost. Reliable and Accurate track limit extrac-
tion is needed for better trajectory planning and increased
agent confidence for upcoming control. Mapping and lo-
calisation require suitably fine grained location information
to enable control to follow a map based racing line, result-
ing in lower lap times. Currently, the control system has
no knowledge of grip and how it is traded between control
inputs. Building this knowledge into the system through
vehicle dynamics would likely yield improved safety and
speed. Additionally, a learning based approach to MPC
controller tuning would enable the automatic adaption of
control parameters to unseen circuits.

Currently our system does not have a planning module
which has a further look ahead than the MPC controller.
This kind of planning module could enable more efficient
trajectories through corners, position the vehicle within the
track limits to reduce cornering radius, and dynamically
adjust control in response to vehicle state.

7. Conclusion
In this paper we have presented a modular autonomous
control system for racing which can be incrementally im-
proved on. The Learn To Race Challenge presented unique
problems which prevented the application of previous au-
tonomous racing solutions. We have demonstrated the effi-
cacy of a simple perception-mapping-localisation-control
pipeline to control vehicles at racing pace safely. Through-
out the stages of this challenge we have built upon our
previous solutions adding and improving modules. This
approach has proved to be competitive with other agents
submitted to the challenge. In the future we would like
to build additional machine learning components into our
solution to see the agent safely push the vehicle to the limit
and achieve optimal lap times.
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A. Modelling
All models where trained at an input resolution of 384x512
in RGB colour space with no image augmentation.

Figure 6. Example segmentation predictions from Deeplabv3+ us-
ing an output stride of 16 (left) and 32 (right)

A.1. EfficientNet Feature Pyramid Network

The EfficinetNetV2 based FPN was trained using the Adam
optimiser (Kingma & Ba, 2014) and Dice loss (Sudre et al.,
2017). A learning rate of 4E-4 was used for 100 epochs
with a batch size of 2. The model with the lowest loss was
selected for deployment. We observed an average inference
time on batches of 3 images of 15.01 ms on an NVIDIA
RTX3090.
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A.2. ResNet Deeplabv3+

Deeplabv3+ was trained using stochastic gradient decent
(SGD) and cross-entropy loss. SDG was configure to use a
learning rate of 0.03, momentum of 0.9 and weight decay of
5E-5. A learning rate of 0.003 was used for 30 epochs with
a batch size of 8. The learning rate was reduced by a factor
of 0.1 each time the validation loss did not change more
than 1E-4 for 3 epochs. The model weights present after
the full number of epochs was selected for deployment. As
all variants explored fit data extremely well–with average
IOU scores larger than 98%—ResNet-18 with an output
stride of 16 was selected as a trade off between inference
time and mask quality, see Table 2. Although, an output
stride of 32 would have been faster, qualitative inspection
of the masks found that the large amount of up-sampling
required caused over smoothing in masks that would clip
into the car’s silhouette, see Figure 6. We observed an
average inference time on batches of 3 images of 5.28 ms
on an NVIDIA RTX3090.

ResNet Variant Inference Time (ms)
Output Stride 18 32 50 101

8 13.08 22.78 41.97 64.83
16 5.28 7.4 15.83 21.98
32 3.74 5.6 11.46 18.01

Table 2. Average inference times observed on batches of 3 images
for Deeplabv3+ models


