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Abstract

Safe reinforcement learning (RL) has achieved
significant success on risk-sensitive tasks and
shown promise in autonomous driving (AD) as
well. Considering the distinctiveness of this com-
munity, efficient and reproducible baselines are
still lacking for safe AD. In this paper, we re-
lease SafeRL-Kit to benchmark safe RL methods
for AD-oriented tasks. Concretely, SafeRL-Kit
contains several latest algorithms specific to zero-
constraint-violation tasks, including Safety Layer,
Recovery RL, off-policy Lagrangian method, and
Feasible Actor-Critic. In addition to existing ap-
proaches, we propose a novel first-order method
named Exact Penalty Optimization (EPO) and suf-
ficiently demonstrate its capability in safe AD. All
algorithms in SafeRL-Kit are implemented (i) un-
der the off-policy setting, which improves sample
efficiency and can better leverage past logs; (ii)
with a unified learning framework, providing off-
the-shelf interfaces for researchers to incorporate
their domain-specific knowledge into fundamen-
tal safe RL methods. Conclusively, we conduct a
comparative evaluation of the above algorithms
in SafeRL-Kit and shed light on their efficacy
for safe autonomous driving. The source code is
available at this https URL.

1. Introduction
Reinforcement Learning (RL) has achieved superhuman per-
formance in many decision-making problems (Mnih et al.,
2015; Vinyals et al., 2019). Typically, the agent learns from
trial and error and requires minimal prior knowledge of the
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environment. Such a paradigm has natural advantages in
mastering complex skills for highly nonlinear systems like
autonomous vehicles (Kiran et al., 2021).

Nevertheless, concerns about the systematic safety limit
the widespread use of standard RL in real-world applica-
tions (Amodei et al., 2016). As an alternative, safe RL takes
safety requirements as hard constraints and optimizes poli-
cies in the feasible domain. In recent years, it has been
deemed as a practical solution to resource allocation (Liu
et al., 2021), robotic locomotion (Yang et al., 2022), etc.

There have also been studies introducing safe RL into au-
tonomous driving (AD) (Isele et al., 2018; Chen et al., 2021;
Li et al., 2022). Despite those ongoing efforts, a unified
benchmark is of great relevance to facilitate further research
on safe AD. We notice some risk-sensitive simulated envi-
ronments (Li et al., 2021; Herman et al., 2021) have been
proposed, but an efficient safe RL toolkit is still absent for
this community. Considering the distinctiveness of AD-
oriented tasks, common code-bases (Ray et al., 2019; Yuan
et al., 2021) lack the following pivotal characteristics:

(1) Being safety-critical. The agent must maintain zero
cost-return as much as possible since any inadmissible be-
havior in autopilot leads to catastrophic failures. Instead,
the previous code-base is built for a general-purpose with
trajectory-based constraints and non-zero thresholds.

(2) Being sample-efficient. Off-policy algorithms can bet-
ter leverage past logs and human demonstrations, which
is crucial for AD. By contrast, the previous code-base re-
quires tens of millions of interactions due to its on-policy
algorithms, like CPO and PPO-L (Ray et al., 2019).

(3) Being up-to-date. There has been a fast-growing body
of RL-based safe control. Nevertheless, the previous code-
base merely contains elder baselines (Achiam et al., 2017;
Chow et al., 2017) and lacks the latest advances.

(4) Being easy-to-use. Most work on learning-based safe
AD tends to incorporate domain-specific knowledge into
fundamental safe RL. Thus the toolkit is supposed to provide
off-the-shelf interfaces for extended studies. However, the
modules of the previous code-base are highly coupled and
are implemented with the deprecated TensorFlow version.

 https://github.com/zlr20/saferl_kit
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Figure 1. The overall framework of SafeRL-Kit. The trajectory collector interacts with specified AD environments (e.g., MetaDrive (Li
et al., 2021)) and stores transitions in the memory. SafeRL-Kit contains several safe RL agents that efficiently learn from past experiences,
including Safety Layer, Recovery RL, Off-policy Lagrangian, Feasible Actor Critic, and newly proposed Exact Penalty Optimization.

To provide a such as toolkit for safe RL algorithms and
understand which of them are best suited for AD-oriented
tasks, our contributions in this work are summarized as the
following three-folds:

• We release SafeRL-Kit, which contains the latest ad-
vances in safe RL (Dalal et al., 2018; Ha et al., 2020;
Thananjeyan et al., 2021; Ma et al., 2021). All algo-
rithms are implemented efficiently under off-policy
settings and with a unified training framework.

• We propose a novel first-order method coined Exact
Penalty Optimization (EPO) and incorporate it into
SafeRL-Kit. EPO utilizes a single penalty factor and
a ReLU operator to construct an equivalent uncon-
strained objective. Empirical results show the simple
technique is surprisingly effective and robust for AD-
oriented tasks.

• We benchmark SafeRL-Kit in a representative toy envi-
ronment and a simulated platform with realistic vehicle
dynamics. To the best of our knowledge, this paper is
the first to provide unified off-policy safe RL baselines
and a fair comparison of them specific to AD.

2. Related Work
2.1. Safe RL Algorithms

A number of works tackle RL-based safe control for au-
tonomous agents, and we divide them into three genres.
The first type of method, coined as safe policy optimiza-
tion, incorporates safety constraints into the standard RL
objective and yields a constrained sequential optimization
problem (Chow et al., 2017; Achiam et al., 2017; Zhang
et al., 2020; Ma et al., 2021; Zhang et al., 2022). The second
type of method, coined as safety correction, projects initial

unsafe behaviors to the feasible region (Dalal et al., 2018;
Zhao et al., 2021). The third type of method, coined as safety
recovery, learns an additional pair of safe actor-critic to take
over control when encountering potential risks (Thanan-
jeyan et al., 2021; Yang et al., 2022).

There have also been studies on safe RL specific to AD-
oriented tasks. Isele et al. (2018) utilizes a prediction
module to generate masks on dangerous behaviors, which
merely works in discrete action spaces. Wen et al. (2020) ex-
tend Constrained Policy Optimization (CPO) (Achiam et al.,
2017) to AD and employ synchronized parallel actors to
accelerate the convergence speed for on-policy CPO. Chen
et al. (2021) take the ego-camera view as input and train an
additional recovery policy via a heuristic objective based
on Hamilton-Jacobi reachability. Li et al. (2022) propose a
human-in-loop approach to learn safe driving efficiently.

2.2. Safe RL Benchmarks

For general scenarios, a set of benchmarks are commonly
used to evaluate the efficacy of safe RL algorithms. The clas-
sic environments1 include Robot with Limit Speed (Zhang
et al., 2020), Circle and Gather (Achiam et al., 2017), etc.
Safety-gym2 (Ray et al., 2019) contains several tasks (goal,
button, push) and agents (point, car, doggo) that are repre-
sentative in robot control problems. Meanwhile, the authors
provide popular baselines3, including CPO and some on-
policy Lagrangian methods. Safe-control-gym4 (Yuan et al.,
2021) bridges the gap between control and RL communities.
The authors also developed an open-sourced toolkit support-
ing both model-based and data-driven control techniques.

1https://github.com/SvenGronauer/Bullet-Safety-Gym
2https://github.com/openai/safety-gym
3https://github.com/openai/safety-starter-agents
4https://github.com/utiasDSL/safe-control-gym
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(a) Cost Signal = 0 (b) Cost Signal = 1

Figure 2. SpeedLimit Benchmark. The vehicle is rewarded for driv-
ing along the avenue, but receives a cost signal if vel > 1.5m/s.

For AD-oriented tasks, there have been some existing envi-
ronments for safe driving. Li et al. (2021) release Metadrive5

that benchmarks reinforcement learning algorithms for ve-
hicle autonomy, including safe exploitation and exploration.
Herman et al. (2021) propose Learn-to-Race6 that focuses
on safe control in high speed. Nevertheless, it still lacks a
set of strong baselines specific to the AD community con-
sidering its distinctiveness depicted above in Section 1. To
our best knowledge, this paper is the first to provide unified
off-policy safe RL baselines and a fair comparison of them
for the purpose of autonomous driving.

3. Preliminaries
A Markov Decision Process (MDP) (Sutton & Barto, 1998)
is defined by a tuple (S,A,P,R, µ, γ). S and A denote
the state space and the action space respectively. P :
S ×A× S 7→ [0, 1] is the transition probability function to
describe the dynamics of the system. R : S ×A 7→ R is the
reward function. µ : S 7→ [0, 1] is the initial state distribu-
tion. γ is the discount factor for future reward. A stationary
policy π : S 7→ P (A) maps the given states to probability
distributions over action space. The goal of standard RL is to
find the optimal policy π∗ that maximizes the expected dis-
counted return JR(π) = Eτ∼π

[∑∞
t=0 γ

tR(st, at)
]
, where

τ = {(st, at)}t≥0 is a sample trajectory and τ ∼ π ac-
counts for the distribution over trajectories depending on
s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P (·|st, at).

A Constrained Markov Decision Process (CMDP) (Altman,
1999) extends MDP to (S,A,P,R, C, µ, γ). The cost func-
tion C : S ×A 7→ [0,+∞] reflects the violation of system-
atic safety. The goal of safe RL is to find

π∗ = argmaxπJR(π) s.t. {at}t≥0 is feasible.

In a CMDP, the cost function is typically constrained in
the following two ways. The first is Instantaneous Con-
strained MDP. This type of Safe RL formualtion requires
the selected actions enforce the constraint at every decision-

5https://github.com/metadriverse/metadrive
6https://github.com/learn-to-race/l2r

(a) Cost Signal = 0 (b) Cost Signal = 1

Figure 3. MetaDrive Benchmark. The vehicle aims to reach virtual
markers, but receives a cost signal if it collides with obstacles and
other vehicles or it is out of the road.

making step, namely C(st, at) ≤ ϵ. The second is Cu-
mulative Constrained MDP. This type of Safe RL for-
mualtion requires the discounted sum of cost signals in
the whole trajectory within a certain threshold, namely
JC(π) = Eτ∼π

[∑∞
t=0 γ

tC(st, at)
]
≤ d.

4. Problem Setup
In this paper, we develop SafeRL-Kit to evaluate efficient RL
algorithms for safe autonomous driving on existing bench-
marks. We simplify the cost function as the following risk-
indicator:

C(s, a) =

{
1, if the transition is unsafe
0, otherwise

. (1)

This formulation is generalizable to different AD-oriented
tasks without cumbersome reward and cost shaping. The
goal of the autonomous vehicle is to reach the destination as
fast as possible while adhering to zero cost signals at every
time steps. Specifically, we conduct comparative evalua-
tions on a representative toy environment and a simulated
platform with realistic vehicle dynamics respectively.

4.1. SpeedLimit Benchmark

The task is inspired by Zhang et al. (2020), as illustrated in
Figure 2. In SpeedLimit task, the agent is a four-wheeled
race-car whose observation is ego position, velocity and
yaw. The selected action controls the Revolution Per Minute
(RPM) and steering of wheels. The agent is rewarded for
approaching xdest = +∞ and the cost function is

C(s, a) =

{
1, if vehicle’s velocity > 1.5m/s

0, otherwise
. (2)

The toy environment is simple yet representative since speed
control is a classic problem in vehicle autonomy. Besides,
the speed limit is easy to reach and thus undesirable algo-
rithms may violate the safety constraint at almost every time
step. That is, the toy environment enables us to see which
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Table 1. Comparison of different safe reinforcement learning algorithms for AD-oriented tasks.

ALGORITHM
CONSTRAINT TYPE POLICY TYPE

CUMULATIVE/INSTANTANEOUS STATE-WISE/TRAJECTORY-WISE DETERMINISTIC STOCHASTIC

CPO (RAY ET AL., 2019) CUMULATIVE TRAJECTORY-WISE ×
√

PPO-L (RAY ET AL., 2019) CUMULATIVE TRAJECTORY-WISE ×
√

TRPO-L (RAY ET AL., 2019) CUMULATIVE TRAJECTORY-WISE ×
√

SAFETY LAYER INSTANTANEOUS STATE-WISE
√

×
RECOVERY RL CUMULATIVE STATE-WISE

√ √

OFF-POLICY LAGRANGIAN CUMULATIVE TRAJECTORY-WISE
√ √

FEASIBLE ACTOR-CRITIC CUMULATIVE STATE-WISE
√ √

EXACT PENALTY OPTIMIZATION CUMULATIVE BOTH
√ √

algorithms can effectively degrade the dense cost return and
are best suited for safe AD tasks.

4.2. MetaDrive Benchmark

This task is inspired by Li et al. (2021), as illustrated in
Figure 3. Metadrive is a compositional, lightweight and
realistic platform for vehicle autonomy. Most importantly, it
provides pre-defined environments for safe policy learning
in autopilots. Concretely, the observation is encoded by
a vector containing ego-state, navigation information and
surrounding information detected by the Lidar. We control
the speed and steering of the car to hit virtual land markers
for rewards, and the cost function is defined as

C(s, a) =

{
1, if collides or out of the road
0, otherwise

(3)

It worth mentioning that we set the traffic density twice than
the original paper to construct a more challenging scenario.

5. Efficient Safe RL Algorithms
5.1. Overall Implementation

The current version of SafeRL-Kit contains some latest
RL-based methods, including Safety Layer (Dalal et al.,
2018), Recovery RL (Thananjeyan et al., 2021), Off-policy
Lagrangian (Ha et al., 2020), Feasible Actor-Critic (Ma
et al., 2021) and newly proposed Exact Penalty Optimization.
We compare above methods along with some existing on-
policy baselines (Ray et al., 2019) in Table 1.

Before diving into algorithmic details, we first explain the
overall implementation of SafeRL-Kit and its benefits:

(1) The adopted algorithms address safe policy learning
from different perspectives (Safety Layer for safety correc-
tion; Recovery RL for safety recovery; Lagrangian, FAC,
and EPO for constrained optimization). Thus, users can
combine AD-specific knowledge with the proper type of
safe RL baselines in their studies.

(2) All the algorithms are implemented under the off-policy
Actor-Critic architecture. Thus, they enjoy better sample
efficiency and can leverage human demonstration if needed.

(3) All the algorithms are implemented with a unified train-
ing framework. By default, all networks are MLPs with
(256,256) hidden layers activated via the ReLU function.
The essential updates of backbone networks follow TD3 (Fu-
jimoto et al., 2018) without pre-training processes. Thus,
we can conduct a fair comparison to see which of them are
best suited for AD-oriented tasks.

5.2. Safety Layer

Safety Layer, added on top of the original policy network,
conducts a quadratic-programming-based constrained opti-
mization to find the ”nearest” action to the feasible region.

Specifically, Safety Layer utilizes a parametric linear model

C(st, at) ≈ g(st;ω)
⊤at + ct−1 (4)

to approximate the single-step cost function with supervised
training and yields the following QP problem

a∗t = argmina
1

2
||a− µθ(s)||2

s.t. g(st;ω)
⊤at + ct−1 ≤ ϵ,

(5)

which projects the unsafe action back to the feasible region.

Since there is only one compositional cost signal in our
problem, the closed-form solution of problem (5) is

a∗t = µθ(st)−
[
g(st;ω)

⊤µθ(s) + ct−1 − ϵ

g(st;ω)⊤g(st;ω)

]+
g(st;ω)

(6)

Thus, Safety Layer is the type of method that addresses
state-wise, instantaneous constraints.

By the way, the gω is trained from offline data in Dalal et al.
(2018). SafeRL-Kit instead learns the linear model with the
policy network synchronously, considering the side-effect
of distribution shift. We employ a warm-up in the training
process to avoid meaningless, inaccurate corrections.
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Table 2. Hyper-parameters of different safety-aware algorithms in SafeRL-Kit.

HYPER-PARAMETER SAFETY LAYER RECOVERY RL LAGRANGIAN FAC EPO

COST LIMIT 0.02 0.1 0.1 0.1 0.1
REWARD DISCOUNT 0.99 0.99 0.99 0.99 0.99
COST DISCOUNT 0.99 0.99 0.99 0.99 0.99
WARM-UP RATIO 0.2 0.2 N/A N/A N/A
BATCH SIZE 256 256 256 256 256
CRITIC LR 3E-4 3E-4 3E-4 3E-4 3E-4
ACTOR LR 3E-4 3E-4 3E-4 3E-4 3E-4
SAFE CRITIC LR 3E-4 3E-4 3E-4 3E-4 3E-4
SAFE ACTOR LR N/A 3E-4 N/A N/A N/A
MULTIPLIER LR N/A N/A 1E-5 1E-5 N/A
MULTIPLIER INIT N/A N/A 0.0 N/A N/A
POLICY DELAY 2 2 2 2 2
MULTIPLIER DELAY N/A N/A N/A 12 N/A
PENALTY FACTOR N/A N/A N/A N/A 5

5.3. Recovery RL

The critical insight behind Recovery RL is to introduce
an additional policy that recovers potential unsafe states.
Consequently, it trains two independent RL agents instead
of solving a cumbersome constrained optimization problem.

Specifically, Recovery RL learns a safe critic to estimate the
future probability of constraint violation as

Qπ
risk(st, at) = ct + (1− ct)γEπQ

π
risk(st+1, at+1). (7)

This formulation is slightly different from the standard Bell-
man equation since it assumes the episode terminates when
the agent receives a cost signal. We found in experiments
that such an early stopping makes it intractable for agents
to master desirable skills in AD. Thus, we remove the early-
stopping condition but still preserve the original formulation
of Qπ

risk in (7) since it limits the upper bound of the safe critic
and eliminates the over-estimation in Q-learning.

In the phase of policy execution, the recovery policy takes
over the control when the predicted value of the safe critic
exceeds the given threshold, as

at =

{
πtask(st), if Qπ

risk

(
st, πtask(st)

)
≤ ϵ

πrisk(st), otherwise
(8)

The optimization objective of πtask is to maximize the cu-
mulative rewards, whereas the goal of πrisk is to minimize
Qπ

risk, namely to degrade the potential risk of the agent.

It is important to store atask and arisk simultaneously in the
replay buffer, and utilize them to train πtask and πrisk respec-
tively in Recovery RL. This technique ensures that πtask can
learn from the new MDP, instead of proposing same unsafe
actions continuously.

Similar to Safety Layer, Recovery RL in SafeRL-Kit also
has a warm-up stage where Qπ

risk is trained but is not utilized.

5.4. Off-policy Lagrangian

Lagrangian Relaxation is commonly-used to address con-
strained optimization problem. Safe RL as well can be for-
mulated as a constrained sequential optimization problem

max
π

E
s∼µ

V π
0 (s)

s.t. E
s∼µ

Uπ
0 (s) ≤ ϵ,

(9)

where V π
0 (s) = Eτ∼π

[∑∞
t=0 γ

trt
∣∣s0 = s] and Uπ

0 (s) =

Eτ∼π

[∑∞
t=0 γ

tct
∣∣s0 = s].

Strong duality holds for primal problem (9) (Paternain et al.,
2022), thus it can be tackled via the dual problem

max
λ≥0

min
π

E
s∼µ
−V π

0 (s) + λ
(
Uπ
0 (s)− ϵ

)
. (10)

The off-policy objective of problem (10) in the parametric
space (Ha et al., 2020) can be formulated as

max
λ≥0

min
θ

ED−Qπ(s, πθ(s))+λ
(
Qπ

c (s, πθ(s))−ϵ
)
. (11)

Stochastic primal-dual optimization (Luenberger et al.,
1984) is applied here to update primal and dual variables
alternatively, which follows as{
θ ← θ − ηθ∇θED

(
−Qπ(s, πθ(s)) + λQπ

c (s, πθ(s))
)

λ←
[
λ+ ηλED

(
Qπ

c (s, πθ(s))− ϵ
)]+

(12)

Notably, the timescale of primal variable updates is required
to be faster than the timescale of Lagrange multipliers. Thus,
we set ηθ ≫ ηλ in SafeRL-Kit.
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5.5. Feasible Actor-Critic

The constraint of Off-policy Lagrangian in Section 5.4 is
based on the expectation of whole trajectories, which in-
evitably allows some unsafe roll-outs. Ma et al. (2021)
introduce a new concept, namely state-wise constraints for
cumulative cost-return which follows as

max
π

E
s∼µ

V π
0 (s)

s.t. Uπ
0 (s) ≤ ϵ,∀s ∈ IF .

(13)

Here s ∈ IF stands for all ”feasible” initial states. Also,
their theoretical results show that problem (13) is a stricter
version than problem (9), which provides strong safety guar-
antees for state-wise safe control.

The dual problem of (13) is derived by rescaling the state-
wise constraints and follows as

max
λ≥0

min
π

E
s∼µ
−V π

0 (s) + λ(s)
(
Uπ
0 (s)− ϵ

)
. (14)

The distinctiveness of problem (14) is there are infinitely
many Lagrangian multipliers that are state-dependent. In
SafeRL-Kit, we employ an neural network λ(s; ξ) activated
by Softplus function to map the given state s to its corre-
sponding Lagrangian multiplier λ(s).

The primal-dual ascents of policy network is similar to (12);
the updates of multiplier network is given by

ξ ← ξ + ηξ∇ξEDλ(s; ξ)
(
Qπ

c (s, πθ(s))− ϵ
)
. (15)

Besides, SafeRL-Kit also sets a different interval schedule
mπ (for πθ delay steps) and mλ (for λξ delay steps) to
stabilize the training process (Ma et al., 2021).

5.6. Exact Penalty Optimization

In this paper, we propose a simple-yet-effective approach
motivated by the exact penalty method.

Theorem 5.1. Considering the following two problems

min f(x) s.t. gi(x) ≤ 0, i = 1, 2, ... (P)

min f(x) + κ ·
∑
i

max{0, gi(x)} (Q)

Suppose λ∗ is the optimal Lagrange multiplier vector of
problem (P). If the penalty factor κ ≥ ||λ∗||∞, problem (P)
and problem (Q) share the same optimal solution set.

Proof. See our recent work (Zhang et al., 2022).

The above theorem enables us to construct an equivalent
function whose unconstrained minimizing points also solve

Algorithm 1 State-wise Exact Penalty Optimization

Require: deterministic policy network π(s; θ); critic net-
works Q̂(s, a;ϕ) and Q̂c(s, a;φ)

1: for t in 1, 2, ... do
2: at = π(st; θ) + ϵ, ϵ ∼ N (0, σ).
3: Apply at to the environment.
4: Store the transition (st, at, st+1, rt, ct, dt) in B.
5: Sample a mini-batch of N transitions from B.
6: φ ← argminφ EB

[
Q̂c(s, a;φ) −

(
c + γc(1 −

d)Q̂C(s
′, π(s′; θ);φ)

)]2
.

7: ϕ ← argminϕ EB
[
Q̂(s, a;ϕ) −

(
r + γ(1 −

d)Q̂(s′, π(s′; θ);ϕ)
)]2

.
8: θ ← argminθ EB

[
− Q̂(s, π(s; θ);ϕ) + κ ·

max{0, Q̂c(s, π(s; θ);φ)− δ}
]
.

9: end for

the previous constrained problem. Meanwhile, the uncon-
strained problem can tackle multiple constraints with exactly
one consistent penalty factor.

Thus, we simplify Lagrangian-based methods (i.e., Off-
policy Lagrangian and FAC) with this technique, consid-
ering that the single-constrained optimization problem (9)
and the multi-constrained optimization problem (13) are
suited for exact penalty method in Theorem 5.1. In this way,
we can employ a single minimization on primal variables
with fixed penalty terms instead of cumbersome min-max
optimization over both primal and dual variables.

Below we merely summarize the state-wise Exact Penalty
Optimization (EPO) in Algorithm 1 as an alternative to FAC,
since FAC provides stricter safety guarantees but suffers
from the oscillation and instability of the multiplier network.
The off-policy surrogate objective of state-wise EPO follows
as

ℓ(θ) = ED−Qπ(s, πθ(s))+κ
[
Qπ

c (s, πθ(s))− ϵ
]+

, (16)

where κ is a fixed, sufficiently large hyper-parameter.

6. Empirical Analysis
We benchmark RL-based algorithms on SpeedLimit
task (Zhang et al., 2020) and MetaDrive platform (Li et al.,
2021). Below, we give a comparative evaluation according
to the empirical results.

Unconstrained Reference. We utilize TD3 (Fujimoto
et al., 2018) as the unconstrained reference for upper bounds
of reward performance and constraint violations. For the
SpeedLimit task (500 max episode horizon), TD3 exceeds
the velocity threshold at almost every step with a near
100% cost rate. For the MetaDrive environment (1000
max episode horizon), the agent receives sparse cost signals
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Table 3. Mean performance with normal 95% confidence for safety-aware algorithms on benchmarks.

ENVIRONMENTS SAFETY LAYER RECOVERY RL LAGRANGIAN FAC EPO

SPEEDLIMIT
EP-REWARD 651.59± 10.70 623.67± 99.58 565.50± 69.29 631.55± 34.92 684.86± 3.19
EP-COST 76.30± 9.07 187.14± 96.50 7.28± 3.11 7.83± 5.23 5.44± 0.53
COSTRATE 0.33± 0.01 0.43± 0.06 0.06± 0.01 0.07± 0.01 0.02± 0.01

METADRIVE
SUCCESSRATE 0.73± 0.05 0.78± 0.06 0.74± 0.05 0.68± 0.04 0.73± 0.05
EP-COST 12.91± 1.10 14.18± 1.92 9.23± 4.88 3.29± 0.50 4.29± 0.71
COSTRATE 0.04± 0.001 0.05± 0.001 0.02± 0.01 0.01± 0.01 0.01± 0.01

when it collides with obstacles or is out of the road. Besides,
the cost signals are encoded into the reward function; other-
wise, it would be too hard to learn desirable behaviors (Li
et al., 2021). Consequently, TD3 with reward-shaping (TD3-
RS) would not have that high cumulative costs as it does in
the toy environment.

Overall Performance. The mean performances are sum-
marized in Table 2 and the learning curves over five seeds
are shown in Figure 4 and 5. We conclude that Safety Layer
and Recovery RL are less effective in degrading cost return.
They still have around 10% safety violations in SpeedLimit,
and the safety improvement in MetaDrive is also limited.
As for Safety Layer, the main reasons are that the linear ap-
proximation to the cost function brings about non-negligible
errors, and the single-step correction is myopic for future
risks. As for Recovery RL, the estimation error of Qrisk is
probably the biggest problem affecting the recovery effects.
By contrast, Off-policy Lagrangian and FAC have signifi-
cantly lower cumulative costs. However, the Lagrangian-
based methods have the inherent problems from primal-dual
ascents. For one thing, the Lagrangian multiplier tuning
causes oscillations of learning curves. For another thing,
those algorithms are susceptible to Lagrangian multipli-
ers’ initialization and learning rate. We conclude that con-
strained optimization still outperforms safety correction and
recovery if the hyper-parameters are appropriately settled.
At last, we find that the newly proposed EPO is surprisingly
effective for learning safe AD. In SpeedLimit, it converges
to a high plateau quickly while adhering to an almost zero
cost return. In MetaDrive, it is still competitive with SOTA
baselines. We regard the underlying reason as that EPO
is an equivalent form to FAC but reduces state-dependent
Lagrangian multipliers to one fixed hyper-parameter. The
consistent loss function stabilizes the training process com-
pared with primal-dual optimization.

Sensitivity Analysis. In this paper, we study the sensitiv-
ity to hyper-parameters of Lagrangian-based methods and
EPO in Figure 6 and Figure 7 respectively. We found that
Lagrangian-based methods are susceptible to the learning
rate of the Lagrangian multiplier(s) in stochastic primal-dual
optimization. First, the oscillating λ causes non-negligible

deviations in the learning curves. Besides, the increasing
ηλ may degrade the performance dramatically. The phe-
nomenon is especially pronounced in FAC, which has a
multiplier network to predict the state-dependent λ(s; ξ).
Thus, we suggest ηλ ≪ ηθ in practice. As for EPO, we
find if the penalty factor κ is too small, the cost return may
fail to converge. Nevertheless, if κ is sufficiently large, the
learning curves are robust and almost identical. Thus, we
suggest κ > 5 in experiments and a grid search for better
performance.

Sample Complexity. Considering the difficulty of the
above two tasks, we run 5 × 105 and 1 × 106 interactive
steps respectively to obtain admissible results. Notably,
previous on-policy codebases require significantly more
samples for convergence; for example, Ray et al. (2019)
run 1 × 107 interactive steps even for toy environments.
Thus, SafeRL-Kit with off-policy implementations is much
more sample-efficient compared to theirs, emphasizing the
applicability of SafeRL-Kit to data-expensive AD-oriented
tasks.

7. Further Discussion
The released SafeRL-kit contains several SOTA off-policy
safe RL methods that are suited for safety-critical au-
tonomous driving. We conduct the comparative evaluation
of those baselines over one representative toy environment
and one simulated AD platform, respectively. The pro-
posed Exact Penalty Optimization in this paper is easy-to-
implement and surprisingly effective on AD-oriented tasks.
We think future work on SafeRL-kit from two aspects:

• The off-policy implementation of SafeRL-Kit can nat-
urally leverage offline data, including past logs and
human demonstrations, which are commonly used and
highly effective for AD-oriented tasks.

• We only benchmark safe RL methods with vector input
(ego-state, navigation information, Lidar signals, etc.)
in this paper. Nevertheless, vision-based AD is still
less studied in the current version of SafeRL-Kit.
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Figure 4. Learning curves on the SpeedLimit benchmark. The x-axis is the number of interactions with the simulator (500,000 total).
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Figure 5. Learning curves on the MetaDrive Benchmark. The x-axis is the number of interactions with the simulator (1,000,000 total).
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Figure 6. Sensitivity studies of Lagrangian-based methods. The first two figures are reward and cost plots of Off-policy Lagrangian on
SpeedLimit task with different λ learning rates. The last two figures are success rate and cost plots of Feasible Actor-Critic on MetaDrive
benchmark with different λ(s; ξ) learning rates.
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Figure 7. Sensitivity studies of Exact Penalty Optimization. The first two figures are reward and cost plots of EPO on the SpeedLimit
task with different penalty factors κ. The last two figures are the success rate and cost plots of EPO on the MetaDrive benchmark with
different penalty factors κ.
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