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Abstract

Goal-directed generation, aiming for solving
downstream tasks by generating diverse data, has
a potentially wide range of applications in the
real world. Previous works tend to formulate
goal-directed generation as a purely data-driven
problem, which directly approximates the distribu-
tion of samples satisfying the goal. However, the
generation ability of preexisting work is heavily
restricted by inefficient sampling, especially for
sparse goals that rarely show up in off-the-shelf
datasets. For instance, generating safety-critical
traffic scenes with the goal of increasing the risk
of collision is critical to evaluate autonomous
vehicles, but the rareness of such scenes is the
biggest resistance. In this paper, we integrate
causality as a prior into the safety-critical scene
generation process and propose a flow-based gen-
erative framework – Causal Autoregressive Flow
(CausalAF). CausalAF encourages the generative
model to uncover and follow the causal relation-
ship among generated objects via novel causal
masking operations instead of searching the sam-
ple only from observational data. Extensive ex-
periments on three heterogeneous traffic scenes
illustrate that CausalAF requires much fewer op-
timization resources to effectively generate goal-
directed scenes for safety evaluation tasks.

1. Introduction
Deep generative models (DGMs) have shown their powers
for data generation in several domains. Recently, people
have been weary of random generation and turned to gen-
erating goal-directed samples useful for downstream tasks.
Standing on the top of successful DGMs, goal-directed gen-
eration demonstrates potentiality in molecule (Shi et al.,
2020) and natural language (Mollaysa et al., 2020) areas,
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which is usually formulated as shifting the generative distri-
bution to satisfy specific goals.

One typical application of goal-directed generation is gen-
erating traffic scenes, which is a universally acknowledged
way to evaluate autonomous vehicles (Riedmaier et al.,
2020). Rare but significant, safety-critical scenes are ex-
traordinarily important for the evaluation. Taking the safety-
critical scene as a goal, such a generation task is challenging
since we need to simultaneously consider scene realism to
avoid conjectural scenes that will never happen in the real
world, as well as the safety-critical level which are indeed
rare compared with ordinary scenes. In addition, generating
reasonable threats to vehicles’ safety can be inefficient if
the model purely relies on the correlation of observation, as
the safety-critical scenes are rare and follow certain funda-
mental physical principles.

Existing work (Engel et al., 2017) searches in the latent
space of generative model to build scenes that satisfy down-
stream requirements. The biggest challenge is that ordinary
scenes may dominate the latent space while safety-critical
samples are ignored as "outliers". Another approach (Tripp
et al., 2020) is to retrain the model during the searching to
avoid forgetting the high-quality but rare data. However,
the efficiency could still be unacceptably low due to the
sparsity of qualified samples. In contrast, humans are good
at abstracting the causation beneath the observations with
prior knowledge, which lights up a new direction towards
causal generative models.

In this paper, we build a goal-directed generative model
with causal priors that are accessible in many applications.
We model the causality as a directed acyclic graph (DAG)
named causal graph (CG) (Pearl, 2009). To facilitate CG
in the downstream tasks, we propose the Behavioral Graph
(BG), which can be regarded as instances of CG (Grünbaum,
1952), for interactive and dynamic scenes representation.
The graphical representation of both graphs makes it possi-
ble to use the BG to unearth the causality given by CG. We
propose the first generative model that integrates causation
into the graph generation task and name it CausalAF. To
connect BG and CG at the graph level, we propose two types
of causal masks – Causal Order Masks (COM) and Causal
Visibility masks (CVM). COM modifies the node order for
node generation, and CVM removes irrelevant information
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Causal Autoregressive Flow

for edge generation.

For a better explanation, we consider a running example of
a traffic scene. When the vision of the autonomous vehicle
a is clear, a can easily see the pedestrian c crossing the road
then decelerate in advance. However, if another vehicle b is
parked in the middle between a and c, the vision of a will be
blocked, making a have less time to brake and more likely
to collide c. This example may take autonomous driving ve-
hicles millions of hours to collect (Feng et al., 2021), which
is challenging for real-world applications. However, when
we use a generative model to create such a scene, it will not
consider the causality but try only to memorize the location
of all objects then generate adversarial examples (Goodfel-
low et al., 2014b). Consequently, the generated scene may
not cause any risk if the objects are slightly different.

Overall, we show the diagram of goal-directed generation
with CausalAF in Fig. 1 and we summarize our contribu-
tions below:

• We proposed a causal generative model named
CausalAF that integrates causal graphs and temporal
graphs for safety-critical scene generation.

• We designed two novel mask operators to reliably in-
tegrate causation order and causation visibility into the
flow-based generation procedure.

• We showed CausalAF demonstrates dramatic improve-
ment in efficiency and generalizability on three standard
traffic settings compared with purely data-driven goal-
directed baseline.

2. Related Work
2.1. Goal-directed Generative Models

DGMs, such as Generative Adversarial Networks (Goodfel-
low et al., 2014a) and Variational Auto-encoder (Kingma &
Welling, 2013), have shown powerful capability in randomly
data generation tasks (Brock et al., 2018). Thanks to the
boom of diverse DGMs, goal-directed generation methods
are widely used in many applications (Mollaysa et al., 2020).
One line of research leverages conditional GAN (Mirza &
Osindero, 2014) and conditional VAE (Sohn et al., 2015),
which take as input the conditions or labels during the train-
ing stage. Another line of research injects the goal into the
model after the training. (Engel et al., 2017) proposes a
latent space optimization framework that finds the samples
by searching in the latent space. This spirit is also adopted
in other fields: (Mollaysa et al., 2019) finds the molecules
that satisfy specific chemical properties, (Abdal et al., 2020)
searches in the latent space of StyleGAN (Karras et al.,
2019) to obtain targeted images.

Recent works combine the advantages of the above two lines

Figure 1. Diagram of proposed CausalAF framework.

by retraining the generative model during the search. To ex-
pand the area of the desired region in the latent space, (Tripp
et al., 2020) iteratively updates the high-quality samples and
retrains the model weights. (Shi et al., 2020) pre-trains the
generative model and optimize the sample distribution with
reinforcement learning algorithms. This paper enhances
the generalizability and efficiency by leveraging causation
graphs so that it is applicable to rare safety-critical scenes.

2.2. Safety-critical Traffic Scene Generation

Traditional traffic scene generation algorithms sample from
pre-defined rules and grammars, such as probabilistic scene
graphs (Prakash et al., 2019) and heuristic rules (Dosovit-
skiy et al., 2017). In contrast, DGMs (Devaranjan et al.,
2020; Tan et al., 2021; Ding et al., 2018; 2020) are recently
used to learn the distribution of objects to construct diverse
scenes. There are two lines of work. One is to directly
search for the adversarial scenes. (Zeng et al., 2019) mod-
ifies the light condition. (Alcorn et al., 2019; Xiao et al.,
2019; Jain et al., 2019) manipulate the pose of objects in
traffic scenes. (Tu et al., 2020; Abdelfattah et al., 2021) adds
objects on the top of existing vehicles to make them disap-
pear, (Sun et al., 2020) creates a ghost vehicle by adding an
ignorable number of points, and (Ding et al., 2021b) gen-
erates the layout of the traffic scene with a tree structure
integrated with human knowledge. Another line of research
generates the risky scenes while also considering the like-
lihood of occurring of the scenes in the real world, which
requires a probabilistic model of the environment. (Zhao
et al., 2017; O’Kelly et al., 2018; Arief et al., 2021) used
various importance sampling approaches to generate risky
but probable scenes. (Ding et al., 2020) merges the natural-
istic and collision datasets with conditional VAE to generate
near-misses. (Ding et al., 2021a) uses reinforcement learn-
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Causal Autoregressive Flow

ing to search for risky cyclist encounters for victim cars
with a penalty of rarity. Compared with purely probabilistic
methods, CausalAF method may have better generalization,
data efficiency, and statistically robust against sparse data
as it not only learns Bayesian models but also capture the
causation of collisions.

2.3. Causal Generative Models and Representation
Learning

The research of causality, mainly described with probabilis-
tic graphical models-based language (Pearl, 2009), is usually
divided into two aspects: causal discovery tries to find the
underlying mechanism from the observational and inter-
ventional data. In contrast, causal inference extrapolates
the given causality to solve new problems. Discovering
the causal graph has been prevalent for several decades.
(Zhu et al., 2019) proposed a flexible and efficient RL-based
method to search over the DAGs space for the best causal
graph that fits the dataset. A toolbox named NOTEARs is
proposed in (Zheng et al., 2018) to learn causal structure
in a fully differentiable way, which drastically reduces the
complexity caused by combinatorial optimization. (Hecker-
man et al., 1995) show the identifiability of learned causal
structure from interventional data, which is obtained by
manipulating the causal system under interventions.

Recently, causality has been introduced into DGMs to learn
the cause and effect with representation learning. Causal-
GAN (Kocaoglu et al., 2017) captures the causation be-
tween labels by training the generator with the causal graph
as a prior, which is very similar to our setting. In Causal-
VAE (Yang et al., 2021), the authors disentangle latent fac-
tors by learning a causal graph from data and corresponding
labels. Previous work CAREFL (Khemakhem et al., 2021)
also explored the combination of causation and autoregres-
sive flow-based model and is used for causal discovery and
prediction tasks.

3. Representation of Causation and Scenes
Our CausalAF is built upon the relation between the CG and
the BG. We start by introducing the definition of these two
types of graphs and the autoregressive generation process
of the BG.

3.1. Causal Graph and Behavioral Graph

The causal graph is defined over m random variables
{x1, ..., xm}. The variables in this vector forms a DAG
GC = (V C , EC). V C ∈ {0, 1}m×n is the node ma-
trix and EC ∈ {0, 1}m×m is the adjacency matrix with
m nodes in n types. Each node i is associated with a
random variable xi. Each edge (i, j) represents a causal
relation from variable xi to xj . For a DAG, there ex-

ists a (not necessarily unique) causal order of the nodes,
such that the cause variable precedes the effect variable:
p(x1, ..., xn) =

∏n
j=1 pj(xj | pa(xj)) , where pa(xj) rep-

resents the parent nodes for variable xj . In this work, we
assume GC is fully accessible with human knowledge and
experience for certain tasks.

We then define the Behavioral Graph GB to represent objects
in a dynamic and interactive scene. According to Definition
1, GB works as a high-level planner for objects and controls
their behaviors in the physical scene with interpretable edge
meanings. A self-loop edge (i, i) represents that one object
takes one action irrelevant to other objects (e.g., a car goes
straight or turns left with no impact on other road users),
while other edges (i, j) means object i takes one action
related to object j (e.g., a car i moves towards a pedestrian j).
The edge attributes represent the properties of actions. For
instance, the attribute [x, y, vx, vy] of one edge represents
the 2-d position and velocity for agent nodes.

Definition 1. (Behavioral Graph) Suppose there are n types
of nodes and a scene have m objects. Then the Behavioral
Graph GB = (V B , EB) contains a node matrix V B ∈
Rm×n representing the categories of objects and an edge
matrix EB ∈ Rm×m×(h1+h2) representing the sequential
interaction between objects, where h1 is the number of edge
types and h2 is the dimension of edge attributes.

3.2. Behavioral Graph Generation with Autoregressive
Flow

Considering the directed acyclic nature of GC , we incorpo-
rate autoregressive flow models (AF) (Huang et al., 2018),
which is a type of DGMs that sequentially generate nodes
based on their predecessors to generate GB . It uses an
invertible and differentiable transformation f to convert
the observations x to a latent variable z that follows a
base distribution p0(z) (e.g., Normal distribution). Ac-
cording to the change of variables theorem, we can obtain
px(x) = p0(f

−1(x))
∣∣∣det∂f

−1(x)
∂x

∣∣∣. To increase the rep-
resenting capability, we repeatedly substitute the variable
for the new variable zi and eventually obtain a probability
distribution of x whose log-likelihood can be written as:

log p(x) = p0(z0)−
K∑
i=1

log

∣∣∣∣det
dfi

dzi−1

∣∣∣∣ (1)

In AF models, the transformation f construct x in a sequen-
tial way, which is naturally consistent with the construction
of GC . To implement the function invertible f , we build a
modelMϕ parametrized by ϕ . The inverse ofMϕ, denoted
asM−1

ϕ , can be used to sample new data from Gaussian
noises: x = zK = f−1

K ◦ f−1
K−1 ◦ · · · ◦ f

−1
0 =M−1

ϕ (z0),
where ◦ means the composition of two functions and
z0 ∼ N (0, I). Let V B

[i,:] and EB
[i,j,:] represent the node xi
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and edge (i, j) of GB sampled from Gaussian distribution

V B
[i,:] ∼ N

(
µv
i , (σ

v
i )

2
)
= µv

i + σv
i ⊙ ϵ

EB
[i,j,:] ∼ N

(
µe
i,j , (σ

e
i,j)

2
)
= µe

i,j + σe
i,j ⊙ ϵ

(2)

where ⊙ denotes the element-wise product. ϵ follows a
Normal distribution N (0, I) and [:] represents all elements
in one dimension. In (2), variables µv

i , σv
i , µe

i,j , and σe
i,j are

obtained fromMϕ:

µv
i , σ

v
i =Mϕ(V

B
[0:i−1], E

B
[0:i−1,:])

µe
i,j , σ

e
i,j =Mϕ(V

B
[0:i], E

B
[0:i,0:j−1])

(3)

where [0 : i] represents the elements from index 0 to index i.
According to (3), the generation of the current node depends
on all previous nodes and edges. Then the edges between
current node and previous nodes are generated. Eventually,
EB will be an upper-triangular matrix since only the latter
generated nodes have edges pointed to formerly generated
nodes. This process is illustrated in Fig. 2.

4. Causal Autoregressive Flow (CausalAF)
Transferring the prior knowledge from GC to GB can be
implemented by increasing the similarity between them.
However, this similarity is not easy to calculate because it
includes the directions between nodes and the input infor-
mation of nodes. To solve this problem, we propose the
CausalAF model with two causal masks, i.e., Causal Order
Masks (COM) and Causal Visible Masks (CVM), that make
the generated GB follow the causal information given in
GC . Particularly, COM is designed for regulating the order
of the node generation, and CVM dynamically masks out
irrelevant information during the edge generation.

Causal Order Masks The order is vital during the gen-
eration of GC since we must ensure the cause is generated
before the effect. To achieve this, we maintain a priority
queue Q to store the valid node types for the current step. Q
is initialized with Q = {xi| pa(xi) = ∅}, which means all
nodes that do not have parent nodes are valid at the begin-
ning. Then, in each node generation step, we update S by re-
moving the generated node xi and adding the child nodes of
xi. Notice that one node could have multiple parents; thus,
we consider one node valid only if all of its parents have
been generated. To encourage the model to generate nodes
that satisfy the causal order, we use Q to create a k-hot mask
Mo(GC) ∈ Rn, where the element is set to 1 if it is corre-
sponding to a valid node. Then, the type of next node xi will
be obtain by vi = argmax(Mo(GC)⊙ softmax(V B [i, :])),
where V B [i, :] is the original node matrix obtained from
Mϕ for node xi. Intuitively, this mask reduces the proba-
bility of the invalid node types to 0 to ensure the generated
node follows the correct order.

Causal Visible Masks Ensuring a correct causal order
is still insufficient to represent the causality, which will
be discussed in the later experiments. Thus, we further
propose another type of mask called CVM. COM serves as
a precondition for CVM in that it guarantees the existence of
one node’s parents before this node is ready to be generated.
Otherwise, one node may lose prior information without
knowing its causes.

At the step of generating edges for node xi, we maintain the
current generated graph with GB(t) = (V B(t), EB(t)),
where t is the index for current step. Then, CVM is
implemented with Mx(GC) ∈ Rm×n and Me(GC) ∈
Rm×m×(h1+h2) that satisfy

Mx(GC)[j, :] = 0

Me(GC)[:, j, :] = 0

Me(GC)[j, :, :] = 0, ∀{j | xj /∈ pa(xi)}
(4)

With these two masks, we can update GB(t) before using it
for next step by

V B(t)← V B(t)⊙Mx(GC)
EB(t)← EB(t)⊙Me(GC)

(5)

We illustrate an example of CVM in (c) of Fig. 2. Assume
we are generating edges for node c. We need to remove
node b since node B does not have edges to node C. After
applying Mx(GC) and Me(GC), we move the features of
node c to the previous position of b. This permuting op-
eration is important since the autoregressive model is not
permutation invariant.

Goal-directed Optimization We then discuss the train-
ing of CausalAF. The target of goal-directed generation
is to create samples satisfying a given goal, which is
formulated as an optimization over objective function
minϕ EGB∼M−1

ϕ
[Lg(GB)]. Usually, the objective Lg con-

tains non-differentiable operators (e.g., complicated sim-
ulation and rendering), thus we have to utilize black-box
optimization methods to solve the problem. We consider a
policy gradient algorithm named REINFORCE (Williams,
1992), which estimates the gradient from samples by

∇ϕLg(GB)
=EGB∼M−1

ϕ
[∇ϕ logMϕ(GB)Lg(GB)]

=
1

N

N∑
i=1

(∇ϕ logMϕ(GBi )Lg(GBi ))

(6)

where N is the number of samples used for each iteration.
Overall, the entire training algorithm is summarized in Al-
gorithm 1.
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Causal Autoregressive Flow

Figure 2. (a) The generation process of a Behavioral Graph. (b) The causal graph and Behavioral Graph used in the example of (a). (c)
The explanation of CVM when generating edges for c, where irrelevant node b is masked out in both V B and EB .

Algorithm 1 Training process of CausalAF
Input: Dataset D, Causal Graph GC , Goal Lg , Learning
rate α, Maximum node number m
Output: The trained modelMϕ

InitializeMϕ by maximizing (1) on D
while not converged do
\\ Sample an BG from model GB ∼M−1

ϕ

for i < m do
Sample a node V B [i, :] by (2)
Calculate Mo(GC) for COM
Apply (4) to get the node type vi
Calculate Mx(GC) and Me(GC) for CVM by (4)
for j < i do

Apply CVM to nodes V B and edges EB by (5)
Sample an edge EB [i, j, :] by (2)

end for
end for
\\ Learn model parameters
Calculate the likelihood Mϕ(GB) of samples
Execute GB to get the goal objective Lg(GB)
Update parameters ϕ = ϕ− α∇ϕLg(GB) via (6)

end while

5. Experiment
We evaluate CausalAF using three top pre-crash traffic
scenes defined in (Najm et al., 2013) and (Van Ratingen
et al., 2016). The benefit of the experimental setting is that
humans usually have good intuitions of traffic scenes to ex-
amine the results. However, our empirical results show that
it may not be trivial for the generative models to learn the un-
derlying causality given the observational data, even if such
causality seems understandable to humans. Particularly,

we conduct a series of experiments to answer the question:
whether there is a significant benefit to integrate causation
into the generative models? We found that CausalAF out-
performs the baseline and the advantages can be mainly
attributed to the causation introduced by COM and CVM
that eliminates irrelevant variables.

Simulator for typical Scenes We consider three safety-
critical traffic scenes (shown in Fig. 3) that have clear cau-
sation. The GC for each scenario is displayed on the upper
right of the scene. These GC are not necessarily unique for
the scene, while they just hypothesize the potential causa-
tion.

• Traffic-light. One potential safety-critical event could
happen when the traffic light T turns from green to
yellow to give road right to an autonomous vehicle A. R
runs the red light, colliding with with A perpendicularly.
Here, A node is the parent for both T and R. T is also a
parent for R because the risk vehicle follows the traffic
light T .

• Pedestrian. A pedestrian P and an autonomous vehicle
A are crossing the road in vertical directions. There also
exists a static vehicle S parked by the side of the road.
Then a potentially risky scene could happen when S
blocks the vision of A and P . In this scene, A node is
the parent for both P and S. S is also a parent for P
since S determines the vision of P .

• Lane-changing. An autonomous vehicle A takes a lane-
changing behavior due to a static car S parked in front
of it. Meanwhile, a vehicle R drives in the opposite
lane. When S blocks the vision of A, then A is likely
to collide with R. In this scene, we make A node as the
parent for both R and S. S is also a parent for R since
the S determines the vision of P .
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Figure 3. Three causal traffic scenes used in our experiments with corresponding causal graphs

Figure 4. The training objective Lg(GB) of three scenes under two temperature settings.

We implement these scenes in a 2D simulator, where all
agents have radar sensors and dynamic models. To avoid
unrealistic collisions, the agent will brake if it detects any
obstacles in front of it. In this case, the collision will not hap-
pen unless the radar of one agent is blocked and the distance
is smaller than the braking distance. This setting is vital in
that it avoids unrealistic collisions and makes the collision
as sparse as in the real world. During the experiments, the
goal-directed generative model firstly samples an GB . Then,
the physical properties (e.g., position and velocity) defined
in the generated GB is executed in the simulator to create
sequential scenes. After the execution, the simulator outputs
the objective function Lg(GB) as the simulation result.

Our goal is to generate risky scenarios that make collision
happen for node A. Therefore, we set the object function to
be a very sparse function: Lg(GB) = 1 only if GB causes
collisions. Since generating goal-directed scenes is a new
task, there are no existing methods to compare. We imple-
ment a baseline model with exactly the same structure as
CausalAF without considering the causation during gener-
ation to represent data-driven generative models. We also
compare with a model without CVM to conduct ablation
studies.

Results and discussion We show the training objectives
of three scenes in Fig 4. Notice that there are two temper-

atures T = 0.5 and T = 1.0 for all methods, which is use
to control the sampling variance ϵ ∼ N (0, T ). A large tem-
perature provides strong exploration but also causes slow
convergence. In all three scenes, CausalAF outperforms
baseline, and the gap is more significant under T = 1.0
setting than T = 0.5. The reason could be that the new
node heavily depends on previously generated nodes in the
autoregressive generation of GB . The baseline has more
noisy and irrelevant relations between nodes; therefore, it is
less efficient to find the scenes that achieve Lg . In addition,
a strong exploration makes the irrelevant information have
more influence on the baseline. In contrast, our CausalAF
ignores the insignificant information and focuses on the cau-
sation that helps with the goal. We also find that CausalAF
without CVM performs a little worse than CausalAF, which
validates our hypothesis that COM may not be powerful
enough to represent causality.

6. Conclusion
This paper proposes a causal generative model that generates
safety-critical scenes with causal graphs obtained from hu-
mans prior. To incorporate the graphical structure of causal
graphs, we design a novel scene representation called the
Behavioral Graph. The autoregressive generation process of
BG makes it possible to inject the causation via regulating
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the generating order and modifying the graph connection.
By introducing causation into generative models, we are
able to efficiently create rare scenes that might be difficult to
find, such as safety-critical traffic scenes. Our method out-
performs the baseline in terms of efficiency and performance
on three scenes that have clear causation. One limitation
of this work is that the causal graph, usually summarized
by humans, is assumed to be always correct. Automatically
discovering the causal graph will be the future direction.
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