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Abstract

Collaborative perception has attracted much atten-
tion because it effectively improves the perception
performance beyond the limited perception ability
of the individual agent. However, most previous
works only consider ideal communication among
agents without interruption, which could seriously
affect collaboration performance. To alleviate the
effect of communication interruption, we propose a
novel interruption-aware robust collaborative per-
ception (IA-RCP) framework, which leverages his-
torical information to recover missing information
due to the communication interruption. To further
improve recovery performance, we design a train-
able spatial attention mask to suppress background
noise and a curriculum learning strategy to stabilize
training. Experiments demonstrate that our method
can bring significant benefits to alleviate the effect
caused by communication interruption.

1 INTRODUCTION
Perception is essential for various robotic systems and has
attracted a tremendous amount of attention from various
fields [Ren et al., 2015; Shi et al., 2019; Chen et al., 2018].
With the rapid developments of advanced sensors and algo-
rithms, the perception ability has made great progress during
the past decade. However, single-agent perception is fun-
damentally limited due to a constrained perception range.
For example, for a single agent, long range and occlusion
scenarios are almost impossible to be solved. To address
these issues, collaborative perception has been proposed to
enable neighboring agents to share information with each
other; so that each agent can perceive the surrounding en-
vironment beyond line-of-sight and field-of-view. Related
techniques are useful in a wide range of real-world appli-
cations, such as vehicle-to-everything-communication-aided
autonomous driving [Wang et al., 2020; Li et al., 2021],
multi-robot warehouse automation system [Li et al., 2020;
Zaccaria et al., 2021] and multi-UAVs (unmanned aerial ve-
hicles) for search and rescue [Scherer et al., 2015; Alotaibi
et al., 2019]. Recently, some works [Chen et al., 2019;
Miller et al., 2020; Arnold et al., 2020] adopted this idea,

proposed several effective collaborative perception methods,
and validated the effectiveness of collaborative perception.

The current success of collaborative perception depends
on not only a well-designed collaboration strategy, but also
ideal communication conditions. Unfortunately, real-world
communication is rarely perfect. Even though communica-
tion technology is developing explosively, some fundamental
issue is still inevitable. For example, random temporary in-
terruption is one of the common communication problems
caused by environmental factors such as unstable communi-
cation channels and equipment failure. In this case, every
communication link between two agents could be interrupted
with a certain probability at each moment. This results in
a dynamic, incomplete communication graph, which would
severely degrade the collaboration performance and further
affect the downstream tasks, such as tracking and trajectory
prediction, causing a cascading failure; see Figure 1.

To fill this gap, this work considers promoting robust col-
laboration gain even with stochastic communication interrup-
tion. It is worth noting that our specific aim is to alleviate
the effect when interruption happens from an perspective of
machine learning algorithm; instead of how to avoid the in-
terruption from a communication perspective. To achieve this
goal, we propose an interruption-aware robust collaborative
perception (IA-RCP) framework, which leverages historical
information to recover the missing information due to the
communication interruption. To achieve reliable recovery, the
proposed IA-RCP framework has two key features. First, we
bridge historical information to missing information through
spatial-temporal correspondence. Since the interruption ran-
domly happens, one agent may receive the relevant informa-
tion from the currently disconnected agents in history. Thus,
we need to infer the current missing messages from history
according to the spatial-temporal relationship to alleviate the
effect of the missing information. Second, we conduct miss-
ing information recovery in the intermediate feature domain
instead of converting to raw data space. This allows easier
and more direct feature extraction and usage.

To further improve the performance of IA-RCP, we pro-
pose a trainable spatial attention mask constraint to suppress
the noise and error generated from inaccurate prediction. We
also adopt a curriculum learning strategy to promote more
stable training. The training process starts with low interrup-
tion probability, and the range of the interruption probabil-



(a) Interruption issue. (b) Affect of perception performance.

Figure 1: Communication interruption issue and its affect. Plot (a) shows that the green vehicle can expand its perception range to overcome
occlusion and long-range issues and detect more objects by leveraging the supportive message sent by the yellow vehicle. However, when
the communication between two vehicles is stochastically interrupted, the performance of collaborative perception becomes unstable: the
detected objects sometimes appear, sometimes are missing, causing noisy inputs for the downstream tasks, such as tracking and trajectory
prediction. Plot (b) shows the empirical performances of collaborative perception methods as a function of interruption probability on the
V2X-Sim [Li et al., 2021] dataset. We see that the performance are seriously degraded due to communication interruption. Fortunately, the
proposed interruption aware collaborative perception framework (red curve) effectively alleviates the degradation.

ity increase gradually. We validate our method on the pub-
lic large-scale collaborative perception dataset V2X-Sim [Li
et al., 2021]. The results show that our IA-RCP framework
can improve the performance of other existing collaboration
strategies at various interruption probabilities and effectively
alleviate the effect of the communication issue. The maxi-
mum improvement is up to 4.47%.

To summarize, our main contributions are as follows:
• We propose an interruption-aware robust collaborative

perception (IA-RCP) framework, leveraging historical infor-
mation to recover missing information due to communication
interruption. To our best knowledge, this is the first work to
address the interruption issue in collaborative perception;

• We propose two further designs to improve the quality
of missing information recovery: spatial attention mask con-
straint for background suppression, and curriculum learning
strategy for more stable training;

• We conduct extensive experiments on V2X-Sim dataset
to show that the proposed IA-RCP brings significant benefits
to alleviate the effect of communication interruption.

2 RELATED WORK
2.1 Collaborative Perception
Collaborative perception can dramatically improve the per-
ception performance compared with single-agent perception

and overcome the physical limitations of single-agent percep-
tion with limited sensor ability, such as the occlusion and
long-range issue. In the image segmentation task, [Liu et
al., 2020b] introduced a handshake mechanism to determine
which agent should communicate with; To decide the com-
munication timing, [Liu et al., 2020a] proposed an asymmet-
ric attention mechanism which establishes communication
groups also in image segmentation task; In 3D autonomous
driving scenarios, [Wang et al., 2020] proposed a multi-round
communication mechanism for joint perception and predic-
tion task; [Li et al., 2021] introduced a collaborative al-
gorithm using knowledge distillation technology to reduce
bandwidth consumption. It also generates point-wise fusion
weight for each spatial coordinate to improve performance.

Most of the previous works discussed the communication
strategy under an assumed perfect communication system.
However, in realistic scenarios, communication is never per-
fect. This work considers the effect of communication inter-
ruption, a common anomaly in the communication process,
in collaborative perception and proposes a robust model for
collaborative perception against communication interruption.

2.2 Vehicle-to-vehicle (V2V) Communication
Vehicle-to-vehicle (V2V) communication can be imple-
mented by two communication solutions, either IEEE
802.11p protocol or cellular network standards [Mei et al.,



2018]. In IEEE 802.11p protocol, stations do not need
to join a BSS (Basic Service Set) by operating in WAVE
(Wireless Access in Vehicular Environment) mode, which
reduces the connection setup overhead and suits vehicular
safety applications well [Jiang and Delgrossi, 2008]. On
the other hand, the fourth-generation cellular networks sup-
port LTE V2V standard development, supporting vehicular
user equipments (VUEs) with low latency and highly reli-
able data transmission [Araniti et al., 2013]. Compared to the
802.11p based V2V communication, it avoids channel con-
gestion and collision induced by CSMA mechanism [Lei et
al., 2016]. Though communication technology keeps devel-
oping for lower latency and better reliability, some fundamen-
tal problem like interruption will inevitably exist for a long
time. Our work in this paper is to alleviate the effect of in-
terruption from an machine learning perspective instead of
avoiding it from a communication perspective.

3 Problem Formulation
We consider there are N agents in a collaborative perception
system. Each agent ai is provided with the accurate pose
information and has a set of neighbour agents Ni. At each
time stamp t, agent ai observes its surrounding environment
to obtain local observation X

(t)
i . Then agents use an encoder

fencode to exact features of X(t)
i and produce the messages to

be transmitted F
(t)
i , that is,

F
(t)
i = fencode(X

(t)
i ).

Once produced, the features will be transmitted to neigh-
bouring agents, and each agent receives the features from its
neighbours. After that, each agent ai fuses its own observa-
tion and received features with a fusion model ffuse to pro-
duce a fused feature H

(t)
i , that is

H
(t)
i = ffuse({F(t)

j }j∈{i}∪Ni
) (1)

Finally, a decoder fdecode is used to decode the fused fea-
tures and obtain the perception results Ŷ(t)

i of each agent as
follows,

Ŷ
(t)
i = fdecode(H

(t)
i ).

The ground truth of the perception results of agent ai at
time stamp t is denoted by Y

(t)
i .

Stochastic communication interruption. When the
stochastic communication interruption is taken into consider-
ation, each communication link between any two agents may
interrupted with a certain probability so that agents will not
be able to receive messages from all neighbour agents. As
shown in Figure 1(b), perception performance will be signif-
icantly degraded by the communication interruption. There-
fore, our specific aim is to make collaborative perception per-
formance robust to the loss of messages caused by stochastic
communication interruption.

4 METHODOLOGY
This section presents the proposed interruption-aware robust
collaborative perception(IA-RCP) framework. We first intro-

duce missing information recovery based on historical infor-
mation. We then aggregate the recovered information with
the ego information and the other well-received information
to achieve comprehensive fusion. We further present two ad-
vanced designs to improve the IA-RCP framework. Finally,
we show the training loss.

4.1 Missing Information Recovery
The communication interruption happens randomly. Though
agent ai fails to receive messages from agent aj at time t, it
may have received the relevant information from aj or other
agents in the past. Motivated by this, we propose to infer the
current missing information based on historical information
through a missing information recovery process. The recov-
ery process is composed of a completion model and a predic-
tion model. The completion model recovers missing infor-
mation at each historical time stamp. The prediction model
then recovers the current feature based on the completed fea-
tures in the historical frames. The overall process is shown
in the top row of Figure 2. The detail of each model will be
introduced in the following.

Historical information. Here, we assume that each agent
ai stores the fused features of the past k key frames, denoted
by H

(t−τ)
i , τ = 1, 2, · · · , k. Note that H(t−τ)

i is fused by the
incomplete features {F(t−τ)

j }
j∈{i}∪R(t−τ)

i
, where R(t)

i ∈ Ni

is the set of neighbour agents from which agent ai can receive
messages at time stamp t. The received unfused features are
aggregated to obtain the fused feature H

(t−τ)
i and the fusion

weight of each unfused features M(t−τ)
j at each time stamp,

which provide us the temporal and spatial information from
history. As shown in the left top part of Figure. 2, we trans-
form all features in history to the coordinate system of current
time t based on the pose information to obtain the historical
features; that is,

{H(t−τ→t)
i }kτ=1 = ξ(t−τ→t)({H(t−τ)

i }kτ=1),

where the subscript (t − τ → t) represents the coordinate
transformation from the coordinate system of time t − τ to
that of time t and ξ(t−τ→t) is the transformation principle
based on the poses at two time points.

Completion model. Since communication interruption
happens stochastically at each time stamp, the historical in-
formation may not be complete as well. Intuitively, agent ai
could get information from both aj and and ak at time t, get
information only from aj at time t + 1, and get information
only from ak at time t + 2. This causes collaboration infor-
mation temporally inconsistent, which makes the recovery of
current missing information difficult.

To solve this issue, we propose the completion model to
make the features at different times consistent with each
other, illustrated in Figure 3. From the feature at first
H

(t−k→t)
i , we predict its state at the next time stamp and fuse

it with the feature received at next time stamp t − k + 1 to
obtain the feature after completion at t− k+ 1, Z(t−k+1→t)

i .
We repeat this process until the last history feature at t − 1.
Each step of the process is formulated as follows,



Figure 2: Overview of the interruption-aware collaborative perception (IA-RCP) framework. We recover the missing information from
the collaboration history through the missing information recovery process, which is composed of a completion model and a prediction model.
The output of the recovery module will be applied to the mask constraint to suppress the noise generated during the recovery. Then we regard
it as the feature from a pseudo agent to compensate for the currently disconnected agent.

Z
(t−τ+1→t)
i = ffuse

(
{F(t−τ+1→t)

j→i }
j∈{i}∪R(t−τ+1)

i
,

fpredict(Z
(t−τ→t)
i )

)
,

Z
(t−k→t)
i = H

(t−k→t)
i ,

where τ = 1, 2, · · · , k−1. fpredict is the prediction model to
predict the next state of the given features and ffuse is the fu-
sion model to fuse input features. The architecture of fpredict
and ffuse will be introduced in detail in the following.

After the completion process, we obtain the features that
can achieve better consistency. We concatenate the feature
after completion concat({Z(t−τ→t)

i }kτ=1) and feed it into the
prediction model.

Prediction model. Since the past feature carries the spa-
tial semantic information at multiple time points, the predic-
tion model fpredict leverages a spatial-temporal pyramid net-
work like [Wu et al., 2020] to capture the multi-scale spatial-
temporal semantic information. To be specific, we employ
two blocks composed of standard 2D convolutions, a degen-
erated 3D convolution, batch normalization, and ReLU acti-
vation. And then, two convolutional layers are used to obtain
the output, F(t)

ci , with the size same as the feature to be fused
in Eq. 1and ci is the index of the predicted feature. The pre-
diction model takes the concatenated features after comple-
tion and output the recovered missing information F

(t)
ci :

Figure 3: Completion model. With the incomplete feature at each
historical time stamp, we recurrently predict its state at the next time
stamp and fuse it with the features received at next time stamp to
obtain the feature after completion.

F(t)
ci = fpredict(concat({Z(t−τ→t)

i }kτ=1)).

Advantages. We conduct the missing information recov-
ery in the feature domain for three reasons. First, it is com-
munication efficient. Compared with sharing raw data, inter-
mediate features are much easier to compress. Recovery in
the feature domain can maximized the utility of the shared
messages. Second, it makes feature extraction more straight-
forward. Recovery in the feature domain allow more direct
feature extraction and usage because the recovery model is
jointly trained with the encoder and decoder. Furthermore,



recovery in the feature domain makes the model focus on pre-
dicting the most informative features and there is no need to
predict the accurate and concrete scenery information, which
is more difficult and with less fault tolerance. Third, recovery
in the feature domain makes it flexible to apply to multiple
tasks and multiple models without changing the design of re-
covery module.

4.2 Information Fusion
After missing information recovery at time stamp t, agents
has the ego feature F

(t)
i , the set of the received features from

neighbour agents {F(t)
j }j∈Rt

i
, and the predicted feature F

(t)
ci .

We regard F
(t)
ci as the feature from a pseudo agent who can

complete the missing information due to the communica-
tion interruption at time t. We utilize a spatial attention fu-
sion model to fuse the features from all agents, including the
pseudo agent.

Coordinate transformation. Firstly, each agent ai trans-
forms the features from other agents into its own coordinate
system based on their poses, that is,

F
(t)
j→i = ξj→i(F

(t)
j ),

where ξj→i is the transformation principle based on the poses
of the two agents ai and aj .After coordinate transformation,
all features are supported in the same coordinate systems.

Spatial attention fusion weight calculation. Since multi-
ple agents have distinct locations and views, the features from
various agents capture information of different spatial areas.
So different spatial cells of the features have different im-
portance to the ego agent. To obtain the most reliable infor-
mation, we need to give various weights to different spatial
cells to strengthen the informative cells and suppress unnec-
essary and noisy cells during the fusion stage. To calculate
the weight, we concatenate each feature with the ego feature
along the channel dimension and use multiple 1 × 1 convolu-
tional layers to gradually reduce the number of channel to 1,
and finally apply a softmax function at each pixel of all fea-
tures to get a spatial mask M

(t)
j of each feature F

(t)
j , that is,

M
(t)
j = softmax(fmask(concat(F

(t)
i ,F

(t)
j→i))),

for all j ∈ {i, ci} ∪ R(t)
i .

Spatial attention information fusion. With the calcu-
lated spatial attention fusion weight, we fuse all features by
weighted averaging, that is,

H
(t)
i =fFuse({F(t)

j→i}j∈{i,ci}∪R(t)
i
)

=
∑

j∈{i,ci}∪R(t)
i

M
(t)
j ⊙ F

(t)
j→i,

where ⊙ is an element-wise multiplication.
In this way, though some information is missed due to the

communication interruption, it can be fused in H
(t)
i if the rel-

evant information has been received in the past. In addition,
the spatial attention fusion model could suppress some error
and noise produced in the missing information recovery pro-
cess with the received features. Finally, the fused feature is
fed into the decoder to obtain the final perception results.

4.3 Advanced Designs
To tackle some issues in the recovery and collaboration pro-
cess, we propose two advanced designs to improve the per-
formance of our model.

Spatial attention mask constraint. During the missing
information recovery process, some harmful noise or even er-
ror may be produced, especially the noise and error contra-
dicting the received information in some certain spatial re-
gions. We aim to eliminate the affect of the recovered in-
formation in these regions because the received features are
enough for perception.

We suppress the background noise with the help of the spa-
tial attention fusion weight, shown in the right top of Figure 2.
If agent ai lost contact with an agent alose at time t but has re-
ceived messages from alose in history, we transform the latest
fusion weight of the feature from agent alose into the coordi-
nate system of time t and set the element less than a certain
threshold to 0 and other elements to 1, then we get the mask
M∗

l of the agent alose, which can reflect the informative re-
gion of the features from alose. Before fusing the recovered
feature F(t)

ci to compensate the missing feature from alose, we
multiply it by the mask to suppress the information in the re-
gions irrelevant to alose. Therefore, the potential noise and
error in these regions are suppressed together. The final for-
mulation of fused feature at time stamp t can be written as:

H
(t)
i = ffuse({F(t)

j→i}j∈{i}∪R(t)
i
, {F(t)

ci ⊙M∗
l }l∈Ni\R(t)

i
).

Curriculum learning. To enable our model to handle dif-
ferent communication conditions, the probability of commu-
nication interruption at each iteration is randomly sampled
from (0, 1) during the training stage. However, the training
loss is closely related to the interruption probability, resulting
in the unstable training that will affect the performance.

To tackle this issue, we adopt the idea of curriculum learn-
ing [Bengio et al., 2009] that learning first starts with only
easy examples of a task and then gradually increases the task
difficulty. It is believed that collaborative perception with low
interruption is an easier case for our framework’s prediction
and detection models. Therefore we make the training pro-
cess begin with low interruption probability, increase the in-
terruption probability range, and gradually add more difficult
samples into the training set .

4.4 Loss Function
The proposed IA-RCP framework does not need to be super-
vised by additional loss function except for the loss function
of the perception task itself, which makes it easy to applied
and transferred into multiple perception tasks. In this work,
we validate the method with the task of collaborative 3D de-
tection based on LIDAR point clouds. The results of detec-
tion Ŷ includes classification result Ŷcls and location result
Ŷloc. The first one achieves classification to decide the prob-
ability of being a target. The second one is a regression prob-
lem who calculates the parameters about bounding boxes. As
a result, We train our model to minimize a loss function which
combines of classification and location loss. The classifica-
tion loss is a cross-entropy loss calculated over each location



(a) Performance in AP@IOU 0.5 (b) Performance in AP@IOU 0.7

Figure 4: Perception Performance with different interruption probability. Our IA-RCP framework outperforms the baselines significantly.

and pre-defined box. The regression loss is a smooth L1 loss
over six variables include central coordinates, length, width
and sin and cos value to represent angle of the boxes. Y is
the ground truth of detection which consist of classification
ground truth Ycls and location ground truth Yloc. The loss
function can be formulated as:

L(Ŷ,Y) = LCE

(
Ŷcls,Ycls

)
+ Lsmooth−L1

(
Ŷloc,Yloc

)
.

5 EXPERIMENTS
5.1 Dataset, Implementation and Evaluation
Dataset. We evaluate our method with the task of 3D ob-
ject detection based on 3D LIDAR point clouds data, which
requires detecting the position and size in the 3D space of ob-
jects. We employ a public large-scale multi-agent perception
dataset, V2X-Sim [Li et al., 2021] to validate our method.
V2X-Sim is a simulation dataset built on Carla [Dosovit-
skiy et al., 2017] and SUMO [Krajzewicz et al., 2012]. The
dataset includes 80 scenes in the training set and 11 scenes
in the evaluation set. Each scene contains up to five vehi-
cles which can establish communication with each other. The
point cloud data is generated with a virtual 32 channels LI-
DAR with 20Hz rotation frequency, and 5Hz recorded fre-
quency. The max detection range of the LIDAR is 70m, and
the number of points per second is up to 250000. We sample
10 frames from each scene in both the training and evaluation
sets.

Implementation and evaluation. We employ the archi-
tecture of the encoder and decoder of [Li et al., 2021]. The
number of the history features k is set to 3. We train our
models for 100 epochs using Adam [Kingma and Ba, 2015]
optimizer on NVIDIA GeForce RTX 3090 GPU. We set the

batch size to 4 and the initial learning rate to 0.001, which
will decay to 0.0005 after the 50th epoch. We adopt the
generic detection evaluation metric: Average Precision (AP)
at Intersection-over-Union (IoU) threshold of 0.5 and 0.7. We
test the model on the test set at nine different interruption
probabilities ranging from 0.1 to 0.9.

5.2 Baselines

Existing collaborative perception strategies. Since the pro-
posed IA-RCP framework is the first to address the communi-
cation interruption issue in collaborative perception, we take
existing collaborative perception strategies as the baselines. i)
V2VNet [Wang et al., 2020]: a state-of-the-art collaboration
strategy, which fuses received features and the ego feature
with a graph neural network; ii) DiscoNet [Li et al., 2021]: a
state-of-the-art collaborative perception method, which fuses
features with a collaboration graph distilled by a teacher
model employing early data fusion. We apply IA-RCP frame-
work to the two baselines to validate the effectiveness of our
method.

Prediction from history results by Kalman Filter. To
illustrate the effectiveness of the prediction in the feature
domain in IA-RCP, we compare it with the prediction from
Kalman Filter based on history. Given the bounding boxes
detected with the incomplete features by DiscoNet, we im-
plemented a naive Kalman Filter to track each object and es-
timate its future state. We used the Hungarian algorithm to
match prediction and measurement in the tracking process.
Finally, we combined the predicted boxes with the detection
results based on currently received features with a simple se-
lection. This baseline method is named by KalmanFilter.



(a) DiscoNet
(without interruption)

(b) DiscoNet
(with interruption)

(c) Kalman Filter
(with interruption)

(d) IA-RCP
(with interruption)

Figure 5: IA-RCP qualitatively improves the perception performance with communication interruption. Each row represents an example and
each column represents a method: (a) the detection results of DiscoNet [Li et al., 2021] without any communication interruption; (b) the
detection results of DiscoNet when interruption occurs; (c) the detection results of KalmanFilter; (d) the detection results of IA-RCP. Our
method recovers most of the boxes which are lost due to the communication interruption.

5.3 Results
Figure 4 shows the collaborative perception performance in
term of AP(@IOU = 0.5/0.7) at different interruption prob-
ability from 0.1 to 0.9. We see that: i) The performance of
proposed IA-RCP framework outperforms the two baselines,
especially in the case with high interruption probability. IA-
RCP outperforms DiscoNet by 4.47% in AP@0.5 and 3.08%
AP@0.7 at interruption probability = 0.7. ii) The prediction
from the perception results by Kalman Filter does not work
well, and its performance is even worse than the baseline in
most situations, suggesting that it is hard to obtain good re-
covery from the output of history.

The results validate the effectiveness of the proposed IA-
RCP framework, which can alleviate the communication in-
terruption issue in collaborative perception. The results sug-
gests that compared with recovery in the output domain, re-
covery in the feature domain is the more reliable choice,
which can take advantage of the history information.

5.4 Ablation Study
Table 1 shows the ablation study of the two advanced de-
signs, including spatial attention mask constraint and curricu-
lum learning. Vinilla IA-RCP denotes the framework without
the two designs. We see that: each design can improve the
performance of the framework and improve more when both
are integrated together, which demonstrates the effectiveness
of the two designs.

5.5 Visualization of Qualitative Results
Fig. 5 shows the comparison of different methods in case of
communication with/without interruption. Each row repre-

Table 1: Ablation study of the effect of the two advanced designs.
Curri represents the curriculum learning and Mask represents spa-
tial attention mask constraint. Mean AP is calculated by averaging
the performance result with the nine probability (0.1 ∼ 0.9).

Method mean AP @IOU=0.5 mean AP @IOU=0.7
vanilla IA-RCP 53.5 47.1

+ Curri 53.7 47.3
+ Mask 54.0 47.4

+ Curri & Mask 54.2 47.7

sents a sample and each column represents the same method
and scenario. Fig.5(a) and 5(b) show the detection results of
DiscoNet without and with communication interruption re-
spectively. We see that: DiscoNet fails to detect some ob-
jects with the collaboration with other agents due to commu-
nication interruption. Fig.5(c) shows the detection results of
KalmanFilter, whose prediction is not precise enough to im-
prove performance. Fig.5(d) show the results of our IA-RCP
framework. Our method recovers most of the lost boxes due
to the communication interruption.

6 CONCLUSION
In this work, we study the problem of collaborative percep-
tion with stochastic communication interruption and propose
an interruption-aware robust collaborative perception (IA-
RCP) framework. Its core idea is to utilize historical infor-
mation to recover missing information due to communication
interruption. In addition, We propose two further designs to
improve the quality of missing information recovery: spatial



attention mask for background suppression, and curriculum
learning strategy for more stable training. Comprehensive re-
sults and quantitative results show that the proposed IA-RCP
framework brings significant benefits to alleviate the effect of
communication interruption.
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