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Abstract
This work presents the experiments and solution
outline for our teams winning submission in the
Learn To Race Autonomous Racing Virtual Chal-
lenge 2022 hosted by [AIcrowd, ]. The objec-
tive of the Learn-to-Race competition is to push
the boundary of autonomous technology, with a fo-
cus on achieving the safety benefits of autonomous
driving. In the description the competition is
framed as a reinforcement learning (RL) challenge.
We focused our initial efforts on implementation of
Soft Actor Critic (SAC) variants. Our goal was to
learn non-trivial control of the race car exclusively
from visual and geometric features, directly map-
ping pixels to control actions. We made suitable
modifications to the default reward policy aiming
to promote smooth steering and acceleration con-
trol.
The framework for the competition provided real
time simulation, meaning a single episode (learn-
ing experience) is measured in minutes. Instead of
pursuing parallelisation of episodes we opted to ex-
plore a more traditional approach in which the vi-
sual perception was processed (via learned opera-
tors) and fed into rule-based controllers.
Such a system, while not as academically “attrac-
tive” as a pixels-to-actions approach, results in a
system that requires less training, is more explain-
able, generalises better and is easily tuned and ul-
timately out-performed all other agents in the com-
petition by a large margin.

1 Introduction
As autonomous vehicle technology advances and becomes
part of the new normal there is greater importance for au-
tonomous vehicles to adhere to safety standards. Whether the
settings is urban driving or high-speed racing similar prin-
cipals apply. Racing demands that a vehicle operate on the
edge of its physical limits at all times dramatically increasing
operational risks. Safe operation becomes critical, especially
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Figure 1: Learn 2 Race simulator

when any slight infraction could lead to catastrophic failure.
Given financial investments in racing vehicles is high, au-
tonomous racing in a controlled simulated environment can
serve as a proving ground for development of safe learning
algorithms.

The Learn-to-Race competition was a simulator-based
challenge in which the aim was to build an autonomous agent
to control a virtual racing car around a track. Agents were
given prior learning opportunities to drive around a specific
track, and then limited exposure to a new, different track, for
which the goal was to achieve the fastest time without incur-
ring safety infractions.

This paper describes our solution to this problem which
achieved first place in single camera, and fastest overall track
time in the 2022 edition of the challenge. We discuss the key
features of our solution, as well as providing details of an
academically more appealing, but significantly less success-
ful approach based more directly on reinforcement learning.
We use the contrast in these approaches to infer some lessons
about learning for driving and other complex control tasks.

1.1 Learn To Race competition
The Learn-to-Race competition provides contestants with a
Gym-compliant framework that leverages a high-fidelity rac-
ing simulator developed by [Arrival, ].

It comprised two rounds. In round one participants devel-
oped and evaluated their agents on Thruxton Circuit, which



Figure 2: Observation images and segmentation masks

was included with the Learn-to-Race environment. Due to
the local availability of the round one evaluation track it was
possible to perfectly fit an agent given the unbounded amount
of practice time.

In stage two agents were evaluated on an unseen track, the
Vegas North Road Circuit. Evaluation consisted of a one hour
practice period, then three laps of the circuit. The evaluation
score considered safety infractions during training, together
with safety infractions plus average speed for the additional
three laps.

Action space
Agents execute actions within a simulated environment which
models the dynamics of a vehicle and generates visual im-
agery from an agent-centric viewpoint. The action space
comprises steering and acceleration control both with a con-
tinuous range of -1.0 to 1.0 representing full left to full right
and maximum braking to maximum acceleration.

Observation space
The Learn-to-Race simulator provides competitors with
multi-modal sensory inputs. The simulation environment
provides for various observation data. During evaluation the
only observation data available is the sequence of RGB im-
ages from a driver-centric perspective and the vehicle veloc-
ity. In addition, during development agents have access to
semantic pixel labels (which designate where the road is in
each image; see Figure 2), and the full vehicle state.

Racetracks
The simulation environment included two real-world tracks.
The first was Thruxton Circuit used for round one evaluation,
modeled from the track at the Thruxton Motorsport Centre
in the United Kingdom. The second is Anglesey National
Circuit, located in Ty Croes, Anglesey, Wales.

For round two, the evaluation competition servers hosted
an unseen track Vegas North Road, located at Las Vegas Mo-
tor Speedway in the United States.

1.2 Our approach
The objective of the Learn-to-Race competition is to push the
boundary of autonomous technology, with a focus on achiev-
ing the safety benefits of autonomous driving.

We focused our initial efforts on implementing RL base-
lines [Raffin et al., 2021] such as Twin Delayed Deep Deter-
ministic Policy Gradient (TD3) and Soft Actor Critic (SAC).

In particular our goal was to learn non-trivial control of the
race car exclusively from visual features, directly mapping
pixels to control actions. We made suitable modifications to
the default reward policy aiming to promote smooth steering
and acceleration control. These experiments and results are
outlined in Section 2.

Nevertheless, the framework for the competition provided
only for real time feedback, meaning a single episode (learn-
ing experience) is measured in minutes. Unless the training
could be done via massive parallelisation of episodes (which
we did not seek to do) the amount of training resources re-
quired was a significant limitation.

As a baseline we decided also to explore a more tradi-
tional approach in which the visual percepts were processed
(via learned operators) and fed into a rule-base controller.
Such a system, while not as academically “attractive” as the
pixels-to-actions approach, results in a system that requires
less training, is more explainable, generalises better, is more
easily tuned. Our system solution and experimental results
are outlined in Section 3.

We conclude the paper with a discussion of the relative
strengths and weaknesses of the two approaches, lessons
learned, and likely directions for future development.

2 Approach 1: Reinforcement Learning
Our initial solution aims to use reinforcement learning (RL)
to learn control commands based solely and directly from the
RGB images “observed” by the agent. We term this approach
a direct pixels-to-actions solution. While it is indeed possi-
ble to learn to race quickly and safely on a single track using
this approach [Fuchs et al., 2020], a significant weakness of
naive application of this approach is over-fitting to aspects of
the imagery that are specific to the training track, and there-
fore a failure to generalise to a new track. For this reason,
and taking inspiration from [Loquercio et al., 2021] we pre-
process the images in a number of ways, computing optical
flow, scene segmentation and/or edge detection, as a means to
train the system with features that generalise across domains
and weather/lighting conditions. We further compress these
features using a Variational Auto-Encoder (VAE) by only us-
ing the latent vector and discarding the decoder at run-time.

During the experiments the Soft Actor-Critic (SAC)
[Haarnoja et al., ] RL algorithm was used as the agent. A
SAC agent comprises of two Multi-Layer Perceptrons (MLP),
one is the actor and the other critic. The input to our SAC
agents was obtained by passing the raw (multi-channel) im-
age data through some pre-processing module/s to obtain a
feature vector. The feature vector is a compressed representa-
tion containing relevant and important information about the
environment.

In all our experiments the pre-processing module used was
VAE. An Auto-Encoder (AE) is a deep-neural network de-
signed to encode an image into a latent representation then
reconstruct the image from the representation. A VAE was
chosen in preference to an AE as the encoding distribution is
regularised during training. We expect that this regularisation
helps learn latent representations with better domain gener-
alisation properties. We describe how these pre-processing



Figure 3: Steering penalty function for steering angle and speed.

elements are learned and used in the following sections.

2.1 Continuous SAC
In this section we detail our experiments and trials using SAC
with acceleration and steering action in continuous space us-
ing only VAE encoded RGB images for observations.

SAC with FLARE
To improve the sample efficiency when training SAC Flow of
Latents for Reinforcement Learning (FLARE) [Shang et al.,
2021] was integrated by taking the difference between the
current and last timesteps latent feature vectors. SAC with
FLARE (SAC-F) was used in all of the following RL experi-
ments.

SAC-F with Modified Reward Policy
The default reward function for the competition was an adap-
tion of the reward function presented in [Fuchs et al., 2020].
The reward function has two components, a) track progres-
sion calculated based on centreline and b) avoiding track
boundaries. We found during training the agent heavily
favoured the track centre. Observed behaviour was the ve-
hicle oscillating left and right trying to maintain track centre.

Oscillating either side of track centre is inefficient, unstable
and likely create unnecessary accidents and infractions during
racing. With this in mind a modification to the reward was
made to penalize the agent for making large steering changes.
We formulate a steering penalty term:

ρsteer(α, s) := −sα4

10

where α is the agent’s speed and s is the steering input,
graphed in Figure 3. This penalty was added to the reward
at each time step with the intention of encouraging the agent
to find a balance between smooth steering control and staying
on the centerline.

Learn-to-Race is a race, staying on track is necessary how-
ever the agent needs to drive as fast as possible. We found that
using the default reward function did not result in fast track
progression. To promote speed a penalty term was added to
the reward function at each time step. This addition penalised
the agent for the amount of time spent in each track segment.

Figure 4: Segment penalty function for time agent is in a segment.

Figure 5: Cumulative reward for validation runs using the modifica-
tions to SAC.

To implement this penalty a timer t ∈ R was started at the
beginning of each track segment as the agent entered it. The
penalty accumulated defined by:

ρsegment(t) := − t1/4

100

while the agent was inside the segment with t resetting at the
start of the next segment. The form of the penalty is shown in
Figure 4.

Results
Overall the performance of SAC-F with additional penalty
terms was poor giving no successful completion of the track
without safety infractions for any of the modifications. The
modifications to the reward functions showed promise for im-
proving the validation episodic return. The small affect the
additional penalty had on the cumulative reward shown in
Figure 5 was seen after around 20 validations where the SAC-
F agent trained with the penalties consistently returns positive
reward.

2.2 VAE with Optical-Flow and Image Edges
The purpose of the VAE is to transform the input image fea-
ture space to a lower dimensional latent space. The latent
space is a compressed version of the input without unnec-
essary information. The VAE used in the previous methods
were training on a data set of RGB images that were collected



from the vehicles camera during manual control on the tracks
that were available to entrants during the competition.

However, the final stage of the Learn-to-Race competition
had entrants competing on an unseen track whose image dis-
tribution would not be the same as the training image distri-
bution. The mismatch in the image distributions would cause
poor generalisation due to over-fitting on the data set during
training.

Therefore, the input images need to be pre-processed to ex-
tract features that describe the geometry of the observation for
any track irrespective of specific image pixel values recorded
by the camera. The new pre-processed images can then be
used as the VAE input to produce abstract latent vectors for
the agent.

The following methods of image pre-processing for ab-
stract latent vectors were trialled: Binary segmentation masks
(discussed in Section 3.1), RGB representations of optical
flow and, edge images.

Specific network details for the modified VAE can be found
in Appendix 5.1.

Optical Flow
Optical flow was used to add information regarding the agents
movement and to add geometry. The optical flow was gener-
ated using the Farnebäck method [Farnebäck, 2003] and then
converted into a three-channel RGB image.

Edge Images
The images edges were used to add more detailed geome-
try information about the track which would be transferable
by stripping away the rendered textures and leaving only the
simulators geometry behind. The image edges were produced
using two methods: Canny edge detection [Canny, 1986] and
edge detection using the Söbel-Feldman operator.

Custom VAE with Combined Inputs
The standard VAE used as a baseline in the Learn-to-Race
competition needed to be modified and retrained to fit the
new distributions formed by the abstract observations and
their combinations. The baseline VAE was modified by in-
creasing the depth of the network with an additional convolu-
tional block at each layer, adding residual connections to the
encoder and decoder convolutional blocks, using Mish acti-
vations [Misra, 2019] instead of ReLU, adding batch nor-
malization to each convolutional block and initialising the
VAE’s weights using Xavier initialisation [Glorot and Ben-
gio, 2010]. No residual connections bypassed the bottleneck.
The bottleneck connection required its output to be normal-
ized using batch normalization for stability during and train-
ing.

The modified abstract VAEs were trained on a NVIDIA
2080ti with cosine annealing [Loshchilov and Hutter, 2016]
for 1000 epochs starting with an initial learning rate of 0.001.
A number of variations of input abstraction channels were
trained which were combined to add information for the latent
space. The variations we tested were Canny edges only, then
gray scale image, see Figure 6, each combined with the RGB
optical flow.

SAC-F Using Abstracted Latents
Three methods were chosen to trial, the baseline RGB VAE
with FLARE [Buslaev et al., 2020], RGB optical flow over
the previous and current frame with an additional Söbel im-
age edge channel, and Canny edges only. The combined
segmentation masks and RGB optical flow did not appear
to reconstruct a detailed enough image and was not trialled
which indicate that the latent vectors did not contain enough
information. The methods were trialled for 10-20 hours on a
NVIDIA 2080ti with a frame rate of 5 fps. Overall, the use of
the abstracted latents marginally improved the total distance
travelled (Figure 7 (a)) and episodic return (Figure 7 (b)) dur-
ing validation on Thruxton when compared to the baseline
method. However, the average speed (Figure 7(c)) was nega-
tively affected by the addition of the abstract latents.

2.3 RL approach summary
Due to the general applicability of model free RL algorithms
should be the ideal candidate for complex control tasks such
as autonomous racing applications. The ability to learn from
experience, adapt and find unique policies in theory should
be able to out-perform any rule based solution.

The issue we faced during the competition is the optimal
policy is learnt from the environment through extensive ex-
ploration, this process however takes thousands of experi-
ences from thousands of environment steps costing time and
computing resources that we were unwilling to commit given
the one hour time constraint in round two.

3 Approach 2: Traditional methods
As a minimum baseline we also implemented a more tradi-
tional approach to autonomous agent control. This approach
uses a combination of (learned) image processing to achieve
situation awareness (track location, position, etc) and rule-
based control.

In particular, we implemented two localisation modules:
the first identified where the centreline of the road in current
observation, as the primary sensor signal to influence steer-
ing angle. The second module identified which zone of the
track the agent was currently traversing. This was used to in-
form the agent of upcoming acceleration and braking zones.
Such zones can only be identified in the broader context of a
memory of the whole track, since they often cannot be dis-
ambiguated using the immediate visual stimulus alone. With-
out positional awareness the acceleration controllers ability
to safely regulate speed was constrained by the camera field
of view.

Given the simulator provided segmentation masks a logi-
cal choice was to use a semantic segmentation network for
track surface identification. The segmentation network ac-
curately classified image pixels as either track or not-track.
With observable pixels classified, key geometric properties
of the observation could be calculated. The properties of the
observation can then be passed to steering and acceleration
controllers.

3.1 Semantic segmentation
This section discusses our semantic segmentation model used
to extract the drivable area ahead of the agent. We first dis-



(a) (b) (c)

Figure 6: Reconstruction results: Top row shows the reconstruction and bottom row is the ground truth. (a) gray scale and RGB flow (b)
Söbel edge images and RGB flow (c) Söbel edge images and Canny edge images

(a) (b) (c)

Figure 7: Episodic return for the each of the trialled VAEs. (a) Episodic return is generally higher for the abstract latents than the baseline
method. (b) total distance travelled in the validation episode was in general higher than the baseline method and (c) average speed was in
general higher for the baseline method than the abstract latents.

cuss the model architecture utilised for agent perception then
discuss the offline training regime. Finally we present the fine
tuning used by our agent during the one hour training period
before final evaluation.

Segmentation model architecture
The semantic segmentation model required a balance be-
tween low inference time and high accuracy. The architec-
ture chosen was a custom PyTorch [Paszke et al., 2019] im-
plementation consisting of an EfficientNet-V2-Small encoder
paired with a Feature Pyramid Network (FPN) decoder.

EfficientNetV2 is a convolutional neural network that has
been optimised to increase training speed and maximise pa-
rameter efficiency. To develop these models, the authors [Tan
and Le, ] use a combination of training-aware neural archi-
tecture search and scaling, to jointly optimize training speed.
EfficientNetV2 utilises a new Fused-MBConv in conjunction
with the MBConv present in EfficientNet. The Efficient-
NetV2 encoder used for the challenge was adapted from an
existing PyTorch repository [Han, 2022].

FPN is a feature extractor for segmentation networks pro-
posed by [Lin et al., 2016]. The FPN feature extractor gen-
erates multiple feature map layers (multi-scale feature maps)
with higher quality information than the regular feature pyra-
mid for object detection.

Specific network details can be found in Appendix 5.2.

Segmentation model training
The segmentation model was trained using 384x512 grey-
scale images to reduce the expected domain gap between un-
observed tracks. Extensive image augmentations were used

Figure 8: Augmentation Examples

to further extend the captured 25000+ training examples. Im-
age and mask augmentation was primarily handled with the
Albumentations library [Buslaev et al., 2020]. Augmen-
tations included Horizontal-Flip, Blur, CLAHE, Posterize,
Random Contrast and Random Brightness. Additional cus-
tom augmentations included axis roll and random cropping.
See Figure 8 for some training samples.

The segmentation model was trained using a standard
Adam optimiser and a custom implementation of Dice Loss:

Dice Loss = 1− 2 ∗ TP
2 ∗ TP + FP + FN



Figure 9: Upper/Lower bounds of usable centreline pixels

Segmentation model training during evaluation
The Learn To Race Challenge allowed participants to see the
test track for one hour prior to evaluation. We utilise this time
to fine tune the segmentation model to ensure high accuracy
predictions. During this training period our agent conserva-
tively drives around the track inferring the drivable area. The
loss between the inferred prediction and the provided ground
truth is then calculated. If the loss is higher than a tunable
threshold it is saved to be used for fine tuning later in the
evaluation period. It was found that to ensure stability when
training images and masks from Thruxton and Anglesey also
needed to be included in the fine tune training.

3.2 Steering controller
The steering and acceleration controllers both rely on pre-
dictions from the segmentation model. An estimate of the
track centreline is calculated using the boundaries of the pre-
dicted road surface shown in Figure 9. The steering angle
was calculated in pixel coordinates rather than transforming
to Cartesian coordinates. Based on the vehicles current ve-
locity a selection of centreline pixels were used to calculate
the relative angle RA for the next environment step:

RA =
arctan (Pj , (Pi − (w/2)))− π/2

π/2

where Pij is the centreline pixel indices, and w is the image
width.

The relative steering angle was fed into a Proportional In-
tegral Differential (PID) controller.

3.3 Acceleration controller
To approximate future time-steps the track centreline pixels
were split into discrete chunks. The chunk size was chosen
so that it represented expected future vehicle positions in the
observed image. The chunks were then used to compute an
estimation of the track curvature at each future step. A Gaus-
sian weighting parameter W was used to weight the future
track curvature and current velocity:

W = 1− 1

c

c∑
j=1

(
exp

(
−1

2

(
x− µ

σ

)2))

where c is the number of chunks, µ is c evenly distributed
values between 0 and 1, x is the current velocity as ratio of
maximum velocity set-point, and σ is the the spread of indi-
vidual chunks.

Track fps local kph fps eval kph
Vegas North Road 6.4 70.853
Anglesey National 7.5 85.89
Thruxton 7.5 132.56 6.4 126.350

Table 1: Track times without location classifier, fps frames per sec-
ond, local/eval (AIcrowd) refers to simulator location

Layer Input Size Output Size Activation
Input feature size feature size Tanh
Hidden 1 feature size 512 ReLU
Hidden 2 512 256 ReLU
Output 256 classes Softmax

Table 2: MLP Layers used for location classification

Taking inspiration from human drivers the acceleration
controller used a discrete set of actions. The simplification
of the action space permitted the use of a simple Bang-Bang
controller to output one of five states given the current veloc-
ity and W . Action space used values [-1, 0, 0.2, 0.4, 1], 0.2
and 0.4 were used if current steering angle exceeded 0.5 and
0.3 respectively.

3.4 Results without track localisation
Work on track localisation started towards the end of round
one of the Learn-to-Race competition. Round one submis-
sion could have certainly been improved with localisation,
but given finishing in the top 10 granted access to Round
two it was not pursued. The results for the three tracks pre-
localisation are shown in Table 1

3.5 Track localisation with classification models
Without localisation the vehicles speed is limited by the track
in which it can observe. Removing the threat of a tight corner
appearing unexpectedly while traveling at top speed allows
the agent to travel safely while also obtaining higher average
speeds.

Experiments were conducted with three different imple-
mentations of location classification, all using a neural net-
work. The first utilises the track segments provided alongside
the simulator, the second uses an arbitrary number of seg-
ments spread out around the map, and the third requires hand
labeling of distinct zones.

Classification model architecture
The classification model used during experimentation was a
two layer MLP. Input to the classification model was a feature
vector extracted from the semantic segmentation model. The
architecture, dimensions and activation functions are listed in
Table 2.

Specific network details can be found in Appendix 5.3.

Experiment 1: Environment track segment
The goal of this experiment was to train a classification model
to recognise the current track segment provided by the simu-
lator. The provided code base which runs experiments tracks
the current segment. Probing this code at run time allowed
us to label samples with the current segment. The model



was trained using 5000 samples spanning the 10 segments
of Thruxton Circuit. The model achieved an accuracy of
99.76% on the 5000 samples collected. The errors observed
during evaluation occurred at the boundary where two track
segments met.

This classifier was not utilised in round two as knowing
the vehicles location at such a coarse scale offered no benefit
predicting upcoming difficult track sections.

Experiment 2: N Sections
The goal of this experiment was to train a classification model
to recognise up to N discrete track sections. Track sections
were defined by evenly selecting key-points along the tracks
centreline, a JSON file containing centreline points (x, y) was
included with the simulator. The N key-points (keyx, keyy)
were then used to divide training samples into sections:

section = argmin
√

(keyx − x)2 + (keyy − y)2

The model was trained using 10000 samples spanning 40
sections. The model achieved an accuracy of 96.4% on sam-
ples gathered from Thruxton circuit. The observed errors dur-
ing evaluation were not confined to the boundaries where two
track sections met as with Experiment 1. The observation er-
rors were able to be corrected with a transition filter which
constrained section changes to occur in sequence.

This approach was a viable option but was not utilised in
round two due to a preference for the method outlined in Ex-
periment 3.

Experiment 3: Specific zone
The goal of this experiment was to train a classification model
to recognise specific track zones deemed difficult or required
actions beyond recognition of sensors. Track zones were cat-
egorised as one of three discrete classes:

• 0, High speed areas, straights and exits from corners

• 1, Approaching moderate corners at mid velocity, tight
corners at low velocity

• 2, Approaching moderate and tight corners such as chi-
canes and hairpins at high velocity

Selecting track zones was a manual process based on
intuition and experiments. For example a long straight
followed by a chicane would is labelled as zone 2 as
the agent will be approaching at high speed and need to
slow down. The defined zones were specified as boxes
(xmin, ymin, xmax, ymax) and labeled [0, 1, 2]. Setting
zones for each track is an iterative process starting conserva-
tive then altering them based upon feedback from observa-
tion, evaluation logs and results. Experimentation was con-
ducted on Thruxton and Anglesey National Circuits, zones
are shown in Figure 10.

The model was trained using 10000 combined samples,
5000 from both Thruxton and Anglesey National Circuits.
The model achieved an accuracy of 99.62% during evalua-
tion laps of Thruxton, and 99.69% during evaluation laps of
Anglesey National. As seen in Experiment 1 the observed er-
rors during evaluation occurred where two track zones met.
Out of the three experiments the specific zone classifier was

Figure 10: Zone boundaries for all three tracks

the easiest to configure, had the best generalisation and was
trainable within the one hour training window.

This version of location classifier was utilised in the round
two of Learn to Race, and was a major contributor to winning
the competition.

Classifier model training during evaluation
To collect the samples required to train the localisation clas-
sifier the vehicle was set to follow the estimated centreline of
the track at up to 10m/s. At each environment step the cur-
rent zone was calculated using the zone boundaries shown in
Figure 10, then the feature vector from the already fine tuned
segmentation model and zone were saved. A total of 4500
training samples were collected. Since the majority of the
collected samples are within zone 0 balancing of classes was
required. We collect an additional 500 samples of zone 1 and
2 to combat this.

No augmentations were applied to the feature vector dur-
ing training and no train-validation split was used. The in-
tention during training was to over-fit the model to the data.
Adam optimiser and cross entropy loss were used for train-
ing as per aforementioned experiments. The model accuracy
recorded for our best submission was 97.7% after 150 epochs,
the lower than expected accuracy led to slightly inconsistent
zone predictions. Without local verification it is unclear how
much effect the mis-classifications had on track times.

Results with track localisation
Of the three classifiers Specific Zone was chosen for round 2.
The work implementing the localisation proved to be crucial



Track fps local kph fps eval kph
Vegas North Road 5.1 92.54
Anglesey National 7.0 103.97
Thruxton 7.0 147.12

Table 3: Track times with location classifier, fps frames per second,
local or evaluation (AIcrowd) refers to simulator location

for posting the fastest lap time in round two and ultimately
winning the Learn-to-Race competition. This implementa-
tion posted a 21.6kph improvement in average speed com-
pared to initial submission. The results for the three tracks
with localisation are shown in Table 3.

4 Conclusion
In this paper, we have presented the experiments and final
approach taken in the Learn-to-Race challenge for safe au-
tonomous driving 2022.

In summary, the RL agents from our experiments were in-
efficient to train and offered no significant improvement com-
pared to the provided Learn-to-Race baseline agents. The in-
ability to effectively explore and sample the unobserved eval-
uation environments resulted in our agents exhibiting unde-
sired behaviours that were prone to safety infractions.

The major benefit of our traditional approach was its ability
to generalise, requiring minimal training time to perform well
in unobserved environments. There are still a few key areas
that can be explored to increase performance for future work
these include a) streamlining of code to increase the obser-
vation and controller update rate, b) implement more sophis-
ticated steering and acceleration controllers, and c) explore
bootstrapping an RL agent with current approach essentially
using RL as fine-tuning mechanism.
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estimation based on polynomial expansion. In Josef Bi-
gun and Tomas Gustavsson, editors, Image Analysis, pages
363–370, Berlin, Heidelberg, 2003. Springer Berlin Hei-
delberg.

[Fuchs et al., 2020] Florian Fuchs, Yunlong Song, Elia
Kaufmann, Davide Scaramuzza, and Peter Dürr. Super-
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5 Appendix

This appendix adds further implementation details to the net-
works used during the competition.

5.1 Variational Auto-Encoder Architecture

The baseline VAE provided in the competition was modified
for the optical flow and edge images as described in section
2.2. The convolutional blocks are summarised in Table 4, 5
and a diagram detailing the layers of the blocks are shown in
Figure 11.

During training on the combined abstract input channels
the network tended to become unstable which prevented a
useful output. The fully connected layers were modified with
normalisation to overcome the instability. The modification
is shown in Figure 12.

Stage Block Channels Kernel Stride Pad
0 Conv00 4, 64 3 2 1
0 Conv01 64, 64 3 - same
1 Conv10 64, 128 3 2 1
1 Conv11 128, 128 3 - same
2 Conv20 128, 256 3 2 1
2 Conv21 256, 256 3 - same
3 Conv30 256, 512 3 2 1
3 Conv31 512, 512 3 - same

Table 4: Modified VAE Encoder Architecture

Stage Block Channels Kernel Stride Pad
3 Conv31 in ch, 512 3x3 2 1, 0
3 Conv30 512, 512 3 3 1
2 Conv21 512, 256 4 2 0, 1
2 Conv20 256, 256 3 1 1
1 Conv11 256, 128 3 2 2
1 Conv10 128, 128 3 2 2
0 Conv01 128, 64 3 2 2
0 Conv00 64, 4 3 1 1

Table 5: Modified VAE Decoder Architecture

Figure 11: Detail of the modified convolutional blocks used.

Figure 12: Detail of the modified fully connected blocks prior to re-
parametrisation.



5.2 Segmentation Network Architectures
As mentioned in section 3.1 the semantic segmentation model
used was a EfficientNetV2 small encoder, paired with a FPN
decoder. The EfficientNetV2 blocks are summarised in Table:
6.

Stage Block Stride Filters Layers
0 Conv 2 24 1
1 Fused-MBConv1 1 24 2
2 Fused-MBConv4 2 48 4
3 Fused-MBConv4 2 64 4
4 MBConv4-SE0.25 2 128 6
5 MBConv6-SE0.25 1 160 9
6 MBConv6-SE0.25 2 256 15

Table 6: EfficientNetV2-S Encoder Architecture Detail

The difference between MBConv and Fused-MBConv are
shown in Figure 13.

Figure 13: MBConv and Fused-MBConv

The FPN decoder uses convolutional filters passed from the
encoder at different resolutions. Filters summarised in Table:
7, input image size was (384, 512, 1).

Stage from table 6 Resolution Filters Shape (h, w)
2 1/4 48 96x128
3 1/8 64 48x64
5 1/16 160 24x32
6 1/32 256 12x16

Table 7: Encoders convolutional filters passed to FPN

Figure 14: Feature Pyramid Network [Lin et al., 2016]

5.3 Classification Network Architecture Detail
As mentioned in section 3.5 the classification model was an
MLP. The input feature vector of length 49152 was created by
reshaping the lowest resolution convolutional filters from the
EfficientNetV2 encoder, see last row in table 7. The model
specifics used for our round 2 submission is detailed in table
8.

Layer Input Size Output Size Activation
Input 49152 49152 Tanh
Hidden 1 49152 512 ReLU
Hidden 2 512 256 ReLU
Output 256 3 Softmax

Table 8: MLP Layers used for location classification
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