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Abstract

For autonomous driving, one of the major chal-
lenges is to predict pedestrian crossing intention
in ego-view. Pedestrian intention depends not only
on their own goals, but also on stimulation of sur-
rounding traffic elements. Most previous methods
focus on representation learning of spatio-temporal
features for detected pedestrians, instead of try-
ing to capture the dynamic interaction relation-
ship between traffic elements as human drivers
do. In this work, inspired by neuroscience that
humans’ understanding of natural vision is ob-
tained through progressive stimulation, we pro-
pose a framework termed as Progressive Interaction
Transformer (PIT) for pedestrian crossing intention
prediction. In particular, local pedestrian, global
environment, and ego-vehicle motion are encoded
as input simultaneously. Through the introduced
temporal fusion block between Transformer layers
and self-attention mechanism, the dynamic interac-
tion relationship between pedestrian, ego-vehicle,
and environment is jointly and progressively mod-
eled. Hence, PIT can progressively process tempo-
ral information and capture the dynamic interaction
relationship to predict the pedestrian intention more
like human drivers. Experimental results demon-
strate that PIT achieves significantly higher perfor-
mance compared with other state-of-the-arts.

1 Introduction
With the development of artificial intelligence, autonomous
driving has made significant progress in recent years. How-
ever, there are still some challenges to achieving high-level
autonomous driving in complex urban scenarios. One of the
major challenges is that vehicles need to analyze and under-
stand the intentions of other traffic participants just like hu-
man drivers do.

In particular, compared with vehicles, pedestrians’ inten-
tion is more irregular and more difficult to predict. In addition
to themselves goal-oriented, pedestrians’ crossing intention
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Figure 1: The dynamic interaction relationship between pedestrian,
ego-vehicle, and environment is progressively modeled to predict
the pedestrian intention. In this task, taking the observation of about
0.5s as input to predict pedestrian intention after 1− 2s, which can
give autonomous vehicles sufficient time to react to pedestrian be-
havior. We term the time as Time-to-event(TTE).

depends on various environmental factors, such as social in-
teractions, and traffic dynamics [Rasouli and Tsotsos, 2019].
Social interactions abundantly exist between pedestrians and
other traffic elements like environment and ego-vehicle. For
instance, pedestrians are more likely to choose not to cross
for a while when vehicles are moving faster or closer to them
[Schmidt and Faerber, 2009], or when the pedestrian crossing
light is changing to red. Hence, how to capture the interaction
relationship between pedestrians and other traffic elements in
dynamic scenes becomes the key point of pedestrian crossing
intention prediction algorithms.

Recently, most researches on pedestrian crossing inten-
tion prediction focus on multi-branch based models [Yang
et al., 2021; Kotseruba et al., 2021]. They often use differ-
ent branches to process information from different sources
independently, and finally concatenate all information to pre-
dict. However, it can not model the potential interaction re-
lationship well. Graph convolution-based model [Liu et al.,
2020] may be a better solution, but there will be some redun-
dancy in the process of scene graph building. Therefore, the
field needs a more efficient and concise framework. Trans-
former [Dosovitskiy et al., 2020], which models the rela-



tionship between image patches through the powerful self-
attention mechanism is a good choice. Different from stan-
dard Transformer, we regard traffic elements as tokens, and
use self-attention mechanism to model the potential interac-
tion relationship between them.

On the other hand, there have been some studies trying to
propose methods for autonomous driving combined with hu-
man cognitive mechanisms [Xia et al., 2020; Plebe et al.,
2021; Gou et al., 2022]. The neuroscience theory points
out that one of the mechanisms of humans’ understanding
of natural vision is obtained through stimulation of the brain
[Turner et al., 2019]. After inputting stimulus, a message
composed of an appropriately timed periodic train of pulse
packets will be progressively amplified, and eventually will
be strong enough to be propagated to the receiver neuronal
network [Chang et al., 2018; Hahn et al., 2019]. In general,
humans understand natural vision through a progressive
process of brain stimulation. Similarly, in driving scenarios,
when human drivers detect the pedestrian in front of vehicle
(stimulation), drivers will observe the pedestrian for a while
to progressive reason his intention and react accordingly.

Inspired by Transformer and neuroscience, we propose
Progressive Interaction Transformer(PIT), which can pro-
gressively process information and capture the dynamic inter-
action relationship between traffic elements more like human
drivers, as shown in Figure 1. Specifically, according to clas-
sical traffic theory, we consider three traffic elements: pedes-
trian, ego-vehicle, and environment (also known as road).
These elements are progressively fed into the transformer
layer as tokens, and the dynamic interaction relationship be-
tween them is jointly and progressively modeled through the
introduced temporal fusion block and self-attention mecha-
nism. In summary, the contributions of our work can be con-
cluded to three-fold:

• We propose a novel framework, Progressive Interac-
tion Transformer(PIT), which can progressively capture
the dynamic interaction relationship between pedestrian,
ego-vehicle, and environment more like human drivers.

• We introduce a simple but effective Temporal Fusion
Block to model long-range temporal dependencies pro-
gressively in PIT.

• Experimental results show that the proposed approach
outperforms existing methods on pedestrian crossing in-
tention prediction task.

2 Related Work
2.1 Pedestrian Intention Prediction
Human intention can be inferred by focusing on his past and
current behavior, including their dynamics, current activity,
and context. In autonomous driving, understanding and pre-
dicting the intention of other road participants is one of the
major challenges. There have been some work to predict road
participants’ intentions, including the intentions of the drivers
[Gebert et al., 2019; Li et al., 2020], other drivers [Li et al.,
2016; Mylavarapu et al., 2020], and pedestrians [Rasouli et
al., 2019a; Razali et al., 2021]. In this paper, we mainly dis-
cuss and study pedestrian intention prediction.

Pedestrian intention prediction can be divided into two cat-
egories: based on trajectory [Rehder et al., 2018; Yu et al.,
2020], and based on action and context [Liu et al., 2020;
Rasouli et al., 2021].The trajectory-based methods focus on
observing pedestrians from the top view of traffic scenarios.
The action- and context-based methods are to observe pedes-
trians from the view of ego-vehicles, which are more prac-
tical for autonomous vehicle systems. With the release of
JAAD dataset [Rasouli et al., 2017], pedestrian crossing in-
tention prediction research has gained more attention. Based
on pedestrian image sequences, [Saleh et al., 2019] used 3D
Convolution-based architectures to predict pedestrian cross-
ing. Further, [Singh and Suddamalla, 2021] combined pedes-
trian pose features as input. Graph Convolution-based mod-
els [Liu et al., 2020; Chen et al., 2021] were proposed to
build the spatio-temporal relationship in driving scene for rea-
soning pedestrian crossing. In [Chaabane et al., 2020], they
predicted future scene representations, and fed them into a
classifier to predict whether a crossing event based on gener-
ative networks. Recently, [Kotseruba et al., 2021] proposed a
benchmark to evaluate the performance of models.

Besides, some multi-branch architecture based methods
were proposed to fuse more key information about pedestrian
intention. In [Rasouli et al., 2019b], they proposed a stacked
GRU network to fuse different modalities, e.g. pedestrian ap-
pearance, poses, surrounding context, and bounding boxes.
[Yang et al., 2022] fused sequences of images, semantic seg-
mentation masks, and ego-vehicle information using atten-
tion mechanisms and a stack of recurrent neural networks.
[Lorenzo et al., 2021] proposed a multi-branch architecture
based on RubiksNet [Fan et al., 2020] and Transformer to
fuse pedestrian appearance, bounding box coordinates, pose
keypoints, and ego-vehicle spend information. In this paper,
we expect to fuse information from different sources through
a simple and single structure, and it can better learn the inter-
action relationship between them.

2.2 Video Transformer
Transformer [Vaswani et al., 2017], as an attention-based
structure, has first shown great advantage in the natural lan-
guage processing field. Inspired by this, transformer has
gradually been migrated to computer vision tasks, and plays
an essential role in the field. For instance, ViT [Dosovit-
skiy et al., 2020] is a pure transformer structure for image
classification that converts a single image to tokens. Not
only that, transformer is also widely used in other computer
vision tasks, such as object detection [Carion et al., 2020;
Zhu et al., 2020], semantic segmentation [Zheng et al., 2021;
Xie et al., 2021], and image enhancement [Zhang et al.,
2021b], etc.

Nonetheless, the above methods focus on learning spatial
context without temporal dependencies that are important for
video understanding. Most recently, some works [Arnab et
al., 2021; Zhang et al., 2021a] tried to obtain temporal depen-
dencies based on transformer and achieved state-of-the-art re-
sults on popular video understanding datasets. Most of them
extract spatio-temporal tokens from entire input video. How-
ever, the memory usage and computational requirements still
are big issues, and inputting the entire video also makes them



impossible to directly apply to real-time scenarios, such as
autonomous driving. In our work, inspired by neuroscience,
we don’t process the entire video sequences at once, but
progressively establish spatio-temporal dependencies through
self-attention mechanism and temporal fusion blocks.

3 Method
In this section, we first formulate the problem, introduce our
model inputs based on traffic theory, and briefly review the
vision transformer architecture as preliminary. Then, we de-
scribe our work in detail, which through Interaction Trans-
former and Temporal Fusion Block, the dynamic interac-
tion relationship between pedestrian, ego-vehicle, and envi-
ronment is jointly and progressively modeled. An overall
pipeline of the framework is illustrated in Figure 2. All in all,
PIT can progressively process input information and learn the
dynamic interaction relationship between traffic elements to
predict pedestrian crossing intention.

3.1 Preliminary
Problem Formulation
We formulate pedestrian crossing intention prediction as a bi-
nary classification task. As shown in Figure1, given 16 video
frames(≈ 0.5s) from the front view of ego-vehicle and the
corresponding ego-vehicle motion information, the goal is to
predict whether the target pedestrian will cross the road. Note
that we follow the settings given by [Kotseruba et al., 2021]:
the last frame of observation is between 1 and 2s prior to the
crossing event start. It is more challenging and practical than
previous works that use complete videos to predict pedes-
trian crossing. Specifically, we term the prediction horizon
as Time-to-event (TTE).

Generally, classical traffic theory divides traffic into three
key elements: person, vehicle, and environment (also known
as road). In this work, we hope to model the dynamic inter-
action relationship between the three traffic elements. Hence,
as follow, three inputs are set in our proposed framework to
correspond to the three elements:

• Pedestrian: the bounding box coordinates Ct
i and the

corresponding image information Iti of pedestrian i.

pti =
{
Ct

i , I
t
i

}
(1)

Pi =
{
pt0i , pt1i , pt2i , · · ·, pt15i

}
(2)

• Ego-vehicle: ego-vehicle speed or motion behavior.

Vi =
{
vt0i , vt1i , vt2i , · · ·, vt15i

}
(3)

• Environment: observed video frames from ego-
vehicle’s front view.

Ei =
{
et0i , et1i , et2i , · · ·, et15i

}
(4)

Vision Transformer Architecture
In this subsection, we briefly review the architecture of vi-
sion transformer [Dosovitskiy et al., 2020]. The standard vi-
sion transformer is an encoder structure that stacked multi-
ple transformer layers. Further, a complete transformer layer

consists of a Multi-Head Self-Attention sub-layer (MSA)
followed by a Mutli-Layer Perceptron sub-layer (MLP ).
Residual connection and layer normalization (LN ) opera-
tions are employed around each of the two sub-layers.

Among them, MSA sub-layer consists of h parallel self-
attention heads to jointly attend to information from different
representation subspaces at different positions. The inputs
of each attention head are query Qi = QWQ

i , key Ki =

KWK
i and value Vi = VWV

i , where WQ
i , WQ

i and WV
i are

learnable weight parameters and d is the dimension of Qi, Ki

and Vi. A single-head self-attention head (SA) is computed
by:

SAi(Qi,Ki, Vi) = softmax(
QiK

T
i√
d

)Vi (5)

All self-attention heads are concatenated and multiplied by
the learnable parameter WO for the output of MSA sub-layer:

MSA(Q,K, V ) = [SA1, SA2, , SAh]W
O (6)

Last, with residual connection operation, the output of MSA
sub-layer fed into the MLP sub-layer for additional process-
ing. Specifically, the MLP sub-layer contains two layers with
a GELU non-linearity.

y = MLP (MSA(x)) +MSA(x) (7)

3.2 The Network Structure
Figure 2(a) shows the overview of the proposed network.
First, for frame t − 1, we convert the traffic elements infor-
mation into tokens by the corresponding Pedestrian, Ego-
Vehicle Motion, and Environment Encoders, and feed
them to Interaction Transformer Layer t − 1, which can
obtain the interaction relationship among tokens using self-
attention mechanism. Then, for frame t, using the same en-
coders to process information at t, and fuse tokens at t − 1
and t by our Temporal Fusion Block, and feed them to In-
teraction Transformer Layer t. Similarly, the process will
be repeated several times until the last frame T of observa-
tion. Last, we feed the class token at T with dynamic inter-
action information to a MLP for pedestrian crossing intention
prediction.

Pedestrian Encoder
As shown in Figure 2(b), Pedestrian Encoder is divided into
two parts: pedestrian feature extractor and coordinate em-
bedding. In pedestrian feature extractor, the pedestrian im-
age Iti provided by the original dataset is resized and fed to
a convolutional network to obtain a high-level visual feature
Xt

i ∈ Rw×h×d. Then, we flatten and map the feature to 1×D
dimensions with trainable linear projection, which is termed
as pedestrian embedding EP t

i
.

The coordinate embedding is designed to inform PIT the
global location of pedestrian bounding box Ct

i . Specifi-
cally, Ct

i is a 4-d vector, as (xLT , yLT , xRB , yRB), where
(xLT , yLT ) and (xRB , yRB) denote the top-left and bottom-
right corner coordinate of bounding box respectively. We also
map Ct

i to 1 × D dimensions as coordinate embedding Ecti
.

In the end, pedestrian embedding Ept
i

is added to coordinate
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Figure 2: Overview of our proposed framework: local pedestrian, global environment, and ego-vehicle motion of the same frame are encoded
as input simultaneously. Each video frame corresponds to a special Interaction Transformer Layer to extract the spatial context (Sec.3.2).
Between each two video frames, they have a Temporal Fusion Block to update tokens to capture temporal dependencies (Sec.3.3). Through
progressive input information and stacking of Interaction Transformer Layer and Temporal Fusion Block, the dynamic interaction relationship
between pedestrian, ego-vehicle, and environment is jointly and progressively modeled.

embedding Ecti
to obtain positional information relative to the

whole picture.

Ept
i
= Ept

i
+ Ecti

(8)
Ego-Vehicle Motion Encoder
The ego-vehicle’s behavior is critical to the decision-making
of pedestrians, hence we introduce ego-vehicle information
Vi into our proposed network. In JAAD dataset, five ego-
vehicle motion behaviors are labeled per frame: stopping, ac-
celerating, decelerating, moving slow, and moving fast. As
shown in Figure 2(c), we encode them and generate the ego-
vehicle motion embedding Evt

i
∈ 1 × D to feed it to Trans-

former layer t.

Environment Encoder
We regard the front view of ego-vehicle as environment
in driving scenarios. Similarly to standard vision trans-
former, we interpret an observed video frame as a sequence
of patches. Specifically, we reshape the observation eti ∈
RH×W×C into sequence of flattened patches and map to
Eeti

∈ R(P 2·C)×D with a trainable linear projection, where
(P, P ) is the size of each image patch,and N = HW

P 2 is the
number of patches.

Interaction Transformer
Transformer can learn token dependencies and encode con-
textual information from the input through self-attention

mechanism. In PIT, we convert pedestrian, ego-vehicle and
environment features into tokens.

Specifically, for time t0, we concatenate class token CLS,
environment embedding Ee0i

, pedestrian embedding Ep0
i
, and

ego-vehicle embedding Ev0
i
. Then, we add the position

embedding Epos to retain positional information of tokens
for Z0. Then, we feed Z0 to a standard transformer layer
with Multi-Head Attention (MSA) and Multi-Layer Percep-
tron (MLP ) to extract the potential interaction relationship
among tokens at t0 :

Z0 = [CLS;Ee0i
;Ep0

i
;Ev0

i
] + Epos, (9)

Z
′

0 = MSA(LN(Z0)) + Z0, (10)

Z
′′

0 = MLP (LN(Z
′

0)) + Z
′

0. (11)

For time t1-t15, we design a variety of temporal fusion
blocks to update tokens representing different traffic elements
to obtain temporal dependencies. The specific method design
is detailed in Subsection 3.3. For t− 1, the output of interac-
tion transformer layer t− 1 is:

Z
′′

t−1 = [CLS
′′

t−1;E
′′

et−1
i

;E
′′

pt−1
i

;E
′′

vt−1
i

] (12)

Then, for t, we extract environment embedding Eeti
, pedes-

trian embedding Ept
i
, and ego-vehicle embedding Evt

i



0 1

1

0

0

0

0

0

0

0

0

1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0

MLP

(a)  t = Add(t-1,t)

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

(b)  t = Add(MLP(t-1,t),t-1) (c)  t = Add(MLP(t-1,t),t-1,t)

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0

MLP

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Figure 3: Various types of Temporal Fusion Blocks: (a)Direct Addition: directly adds tokens t − 1 through Interaction Transformer to
corresponding tokens at t. (b)Based on MLP: Tokens t − 1 and tokens t are fused by MLP. (c)Based on Addition and MLP: Combining
from (a) and (b), tokens t− 1 and tokens t are fused by addition and MLP.

through corresponding encoders. For extracting temporal de-
pendencies, we use them to update the corresponding tokens
based on temporal fusion blocks(TFB):

Eeti
= TFB(E

′′

et−1
i

, Eeti
) (13)

Ept
i
= TFB(E

′′

pt−1
i

, Ept
i
) (14)

Note that ego-vehicle embedding don’t use TFB, but directly
replace E

′′

vt−1
i

with Evt
i
. For interaction transformer layer t:

Zt = [CLS
′′

t−1;Eeti
;Ept

i
;Evt

i
], (15)

Z
′

t = MSA(LN(Zt)) + Zt, (16)

Z
′′

t = MLP (LN(Z
′

t)) + Z
′

t . (17)

Similarly, the process(Eq.13-17) will be repeated several
times until the last frame of observation t15. Last, we feed the
class token at t15 with progressive interaction information to
a MLP for pedestrian crossing intention prediction:

y = MLP (LN(CLS
′′

t15)) (18)

3.3 Temporal Fusion Block
In this work, we expect a simple way to update tokens to
progressively establish temporal dependencies, just as hu-
mans do with the progressive reception of dynamic informa-
tion. As shown in Figure 3, we design three Temporal Fusion
Blocks to fuse the corresponding tokens feature at t − 1 and
t: (a)Direct Addition, (b)Based on MLP, and (c)Based on
Addition and MLP. We insert a Temporal Fusion Block be-
tween two Interaction Transformer layers.

Note that we only use Temporal Fusion Block to update
environment and pedestrian information without ego-vehicle
information. This is because there are two different infor-
mation mechanisms here. Specifically, from the view of hu-
man drivers, they progressively receive dynamic information
of environment and pedestrians, and react to it to control ego-
vehicle. We believe that ego-vehicle information does not
need to be progressively updated in PIT.

Block(a): Direct Addition
Block(a) fuses temporal information by direct addition,
which adds neither extra parameter nor computational com-
plexity. It is the simplest method, but already works well (De-
tails are in Section 4). Between two transformer layers, di-
rectly add updated corresponding embeddings at t and tokens
that have extracted spatial context and interaction relationship
through transformer at t− 1.

Eeti
= Eeti

+ E
′′

et−1
i

(19)

Ept
i
= Ept

i
+ E

′′

pt−1
i

(20)

Block(b): Based on MLP
In block(b), we concatenate tokens of corresponding traffic
elements at t − 1 and t, and use a MLP to fuse information
and compress back to the original dimension 1×D. Then, for
making information propagation smooth, we correspondingly
add tokens at t− 1.

Eeti
= MLP (Eeti

, E
′′

et−1
i

) + E
′′

et−1
i

(21)

Ept
i
= MLP (Ept

i
, E

′′

pt−1
i

) + E
′′

pt−1
i

(22)

Block(c): Based on Addition and MLP
Block(c) is combined with blocks(a) and (b). In this block,
not only direct addition is required, but also need to fuse tem-
poral information through MLP.

Eeti
= MLP (Eeti

, E
′′

et−1
i

) + E
′′

et−1
i

+ Eeti
(23)

Ept
i
= MLP (Ept

i
, E

′′

pt−1
i

) + E
′′

pt−1
i

+ Ept
i

(24)

4 Evaluation
In the section, we conduct exhaustive comparison experi-
ments on JAAD dataset to evaluate the performance of PIT.
Experimental results show that PIT outperforms current state-
of-the-art methods. Further, we also design extensive ablation
experiments to explore more possibilities of PIT.



Models Model Variants ACC AUC F1 P R
VGG16 / 0.59 0.52 0.71 0.63 0.82

ResNet50 / 0.46 0.45 0.54 0.58 0.51
ATGC AlexNet 0.48 0.41 0.62 0.58 0.66

SingleRNN-LSTM LSTM 0.51 0.48 0.61 0.63 0.59
SingleRNN-GRU GRU 0.58 0.54 0.67 0.67 0.68

MultiRNN GRU 0.61 0.50 0.74 0.64 0.86
StackedRNN GRU 0.60 0.60 0.66 0.73 0.61

SFRNN GRU 0.51 0.45 0.63 0.61 0.64
C3D 3D CNN 0.61 0.51 0.75 0.63 0.91

I3D-RGB 3D CNN 0.62 0.56 0.73 0.68 0.79
I3D-Optical flow 3D CNN 0.62 0.51 0.75 0.65 0.88

PCPA 3D CNN+RNN+Attention 0.58 0.50 0.71 / /
TrouSPI-Net GRU+Attention 0.64 0.56 0.76 0.66 0.91

FFSTP GRU+Attention 0.62 0.54 0.74 0.65 0.85
IntFormer Transformer 0.59 0.54 0.69 / /

PIT-Block(a) Transformer 0.67 0.69 0.77 0.71 0.84
PIT-Block(b) Transformer 0.64 0.55 0.78 0.65 0.96
PIT-Block(c) Transformer 0.69 0.67 0.81 0.69 0.97

Table 1: Performance Comparison with State-of-the-Art Methods. Bold is best and underline is second best.

4.1 Datasets
We evaluate our framework on JAAD [Rasouli et al., 2017]
that is one of the most widely used pedestrian datasets. To
create fair experiment settings, we reimplement the bench-
mark [Kotseruba et al., 2021] as dataset configuration. Joint
Attention in Autonomous Driving (JAAD) dataset contains
346 short clips of pedestrians prior to crossing events filmed.
In JAAD, each frame includes bounding box information and
contextual annotations for the scenes.

4.2 Implementation Details
In our method, we set the dimension of each transformer layer
to 1024, the dimension of MLP to 2048, the number of atten-
tion head to 16. We train the model with Adam optimizer and
crossentropy loss. we set the learning rate starts from 8e−5

and decays by 0.2 rate every 5 epochs. We set the batch size
to 10. Considering the significant imbalance of dataset, we
follow the benchmark [Kotseruba et al., 2021] to apply class
weights that are inversely proportional to the percentage of
samples of each class.

4.3 Comparison with State-of-The-Art methods
We compare ours with 11 state-of-the-art methods, including
ATGC [Rasouli et al., 2017], SingleRNN [Kotseruba et al.,
2020], MultiRNN [Bhattacharyya et al., 2018], StackedRNN
[Bhattacharyya et al., 2018], SFRNN [Yang et al., 2021],
C3D [Tran et al., 2015], I3D [Carreira and Zisserman, 2017],
PCPA [Kotseruba et al., 2021], TrouSPI-Net [Gesnouin et al.,
2021], IntFormer [Lorenzo et al., 2021], and FFSTP [Yang et
al., 2022]. The evaluation metrics include accuracy, AUC,
F1 score, precision, and recall that are widely used in related
work. The results are shown in Table1.

Effect of Our Method
Table 1 shows that PIT is superior to the others. Specif-
ically, PIT using temporal fusion block(a) outperforms all

other methods in the three most important evaluating indica-
tors of accuracy, AUC, and F1 score. For PIT using temporal
fusion block(c), it achieves the best results in accuracy, AUC,
F1 score, and recall. For PIT using temporal fusion block(b),
it also outperforms most other methods. From above, PIT is
more effective than the state-of-the-art methods on the pedes-
trian crossing intention prediction task.

Effect of Proposed Temporal Fusion Block
From Table 1, block(c) combined with block(a) and block(b)
achieves the best effect. Although block(a) is the simplest
one without adding extra parameter, it also achieves a good
effect. Compared with the three proposed temporal fusion
blocks, direct addition may be more cost-effective in estab-
lishing temporal dependencies than using MLP. All in all, we
find that our proposed temporal fusion block can effectively
fuse temporal information and establish temporal dependen-
cies in Transformer structure.

4.4 Ablation Study
Inspired by neuroscience, PIT can progressively process input
information(called stimulation in neuroscience) and under-
stand the dynamic interaction relationship to predict pedes-
trian intention like human drivers. In this subsection, we con-
duct extensive ablation experiments to verify the effective-
ness of fusing different traffic element information. Mean-
while, we also explore a variety of ways to reduce observa-
tion(stimulation) lengths to achieve a more efficient reasoning
process.

Are all traffic element information necessary?
In standard PIT, we consider the interaction relationship with
pedestrian, ego-vehicle, and environment. But do all traf-
fic elements need to be considered? We conduct two addi-
tional ablation experiments as follows: 1) Consider only the



interaction between pedestrian and environment without ego-
vehicle. 2) Consider only the interaction between pedestrian
and ego-vehicle without environment.

Input Element ACC AUC F1 P R
Pi, Ei 0.64 0.57 0.74 0.70 0.79
Pi, Vi 0.64 0.60 0.76 0.68 0.86

Pi, Vi, Ei 0.67 0.69 0.77 0.71 0.84

Table 2: Ablation experiments for inupt element information.

Table 2 shows the comparison of different traffic element
inputs on JAAD dataset. The standard PIT considering all
traffic elements achieves the best results. It shows that
both ego-vehicle and environment contain important cues that
influence pedestrians’ decision-making. For better perfor-
mance, it is necessary to consider all traffic element infor-
mation.

How much effect will reducing sampling rate have?
In standard PIT, we follow [Kotseruba et al., 2021] with using
the observation length of about 0.5s and the sampling rate of
1. In other words, use 16 consecutive frames as input. A
question worth considering is whether to reduce the sampling
rate to achieve a more lightweight model. Based on this, we
try to adjust the sampling rate to 2 and 4 and conduct ablation
experiments. Note that although the number of use frames is
reduced, the observation range is still 0.5s without reduction.

Samling
Rate

Use
Frames ACC AUC F1 P R

4 4 0.62 0.61 0.74 0.68 0.81
2 8 0.63 0.60 0.74 0.68 0.81
1 16 0.67 0.69 0.77 0.71 0.84

Table 3: Ablation experiments for sampling rate.

Table 3 shows that reducing the sampling rate will reduce
accuracy compared to standard PIT, which may be due to
weakening the temporal dependencies and compression of
reasoning processes. However, compared with Tables 1 and
3, PIT with lower sampling rates can still outperform most
state-of-the-art methods with higher sampling rates. It shows
that PIT’s powerful ability to extract dynamic interaction re-
lationships.

How much effect will reducing observation length have?
Different from previous experiments that reduce sampling
rate to compress reasoning processes, we explore the effect
of reducing observation length on model performance in this
problem. In particular, we reduce the observation length to 12
frames (t4−t15), 8 frames (t8−t15), and 4 frames (t12−t15).
Note that the observation length of standard PIT is 16 frames
(t0 − t15).

Table 4 shows the effect of reducing observation length on
prediction results. Generally, the prediction results decrease
slightly with the decrease of observation length. Compared

Observation Use
Frames ACC AUC F1 P R

t12 − t15 4 0.64 0.59 0.74 0.69 0.80
t8 − t15 8 0.65 0.58 0.75 0.70 0.81
t4 − t15 12 0.65 0.60 0.78 0.67 0.93
t0 − t15 16 0.67 0.69 0.77 0.71 0.84

Table 4: Ablation experiments for observation length.

with Table 3 and 4, it can be found that under the same num-
ber of use frames, observation close to the last frame can have
better prediction accuracy. It is consistent with intuition that
the closer to crossing event, the more visual information clues
will be revealed.

5 Conclusion
In this paper, we propose Progressive Interaction Trans-
former(PIT) for pedestrian crossing intention prediction. Our
method relies on the introduced temporal fusion block and
self-attention mechanism to progressively model the dynamic
interaction relationship between pedestrian, ego-vehicle, and
environment. Based on this, our method can progressively
reason pedestrian intention more like human drivers. Ex-
perimental results show that the proposed approach outper-
forms existing methods on pedestrian crossing intention task.
In addition, we further explore the effect of reducing input
elements, reducing sampling rate, and reducing observation
length on model performance through ablation studies. All in
all, PIT is a promising model to be applied to other computer
vision and robotics tasks, such as human-object interaction
detection, video understanding, etc.
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