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Abstract

Deep reinforcement learning has achieved signifi-
cant results in low-level controlling tasks. However,
for some applications like autonomous driving and
drone flying, it is difficult to control behavior sta-
bly since the agent may suddenly change its actions
that often lower the controlling system’s efficiency,
induce excessive mechanical wear, and cause un-
controllable, dangerous behavior to the vehicle. Re-
cently, a method called Conditioning for Action Pol-
icy Smoothness (CAPS) is used to solve the problem
of jerkiness in low-dimensional features for appli-
cations such as quadrotor drones. In this paper, we
extend CAPS to image-based CAPS and also apply
it to solve jerky control in autonomous miniature car
racing. Our experiments show that combining CAPS
and sim-to-real transfer methods helps stabilize the
control at a higher speed. Especially, the agent with
CAPS and CycleGAN reduces the average finishing
lap time, while also improving the completion rate.
We also conduct extensive experiments to analyze
the impact of CAPS components.

1 Introduction

In recent years, deep reinforcement learning (DRL) has
been applied to many real-world applications and achieved
many milestones. However, a critical problem in control
policy is the jerky behavior, when training the agent in a
complex dynamical environment [7} [8l. Especially, in au-
tonomous driving or quadrotor drone flying, jerky control
causes many serious problems, such as uncontrollable mov-
ing and power-consuming, which reduce the service life
of the autonomous vehicle. Prior works addressed the is-
sue of smoothness policy by using reward engineering [5}
6ll. This approach designed a reward function for a specific
task. In autonomous driving, for example, the agent will be
penalized if the current action is too different to the previous
action, or the selected speed is too slow. Reward engineer-
ing is based on prior human knowledge about the tasks. It
is easy to implement, but hard to design a good reward func-
tion. Recent researches used DRL algorithm to solve this
problem, trying to maximize total episode reward, and also
smoothing control or action oscillation. Yu at el. presented

temporally abstract actor-critic TAAC, an off-policy reinforce-
ment learning incorporates with closed-loop action repetition
(temporal abstraction)[10]. A work in [2]] proposed Nested
Soft Actor-Critic (NSAC), a DRL algorithm that helps to re-
duce oscillation behavior in autonomous driving compared to
a range of commonly adopted baselines with almost similar
performance. Siddharth Mysore et al. proposed Conditioning
for Action Policy Smoothness (CAPS) for solving jerky ac-
tions by adding regularization terms[9]. CAPS was originally
applied to smooth the control of quadrotor drones with some
low dimensional features.

Contributions. The main contributions of this paper can
be summarized as follow: 1) We extend CAPS[9] to image-
based CAPS, and apply to solve jerky control in autonomous
car racing. 2) In the experiments, we show that CAPS helps
stabilize the car when moving at a higher speed. Especially,
the method that combines CycleGAN and CAPS outperforms
other methods and reduces the average finish lap time, while
also improving the completion rate. 3) We also conducted ex-
tensive experiments to study the impact of CAPS components.

2 Conditioning for Action Policy Smoothness

Siddharth Mysore et al. introduced Conditioning for Action
Policy Smoothness (CAPS)[9] and got significant improve-
ments in controller smoothness and power consumption on a
quadrotors drone. To condition policies for smooth control,
the authors proposed two regularization terms: 1) Temporal
Smoothness term. 2) Spatial Smoothness term.

The policy 7 is a mapping function of states s to actions
a = m(s). The objective function of CAPS, JS*, contains
three components: objective function of Soft Actor-Critic
J; Temporal Smoothness regularization term L7 ; and Spa-
tial Smoothness regularization term Lg. The regularization
weights Ay and Ag are used to balance the impact of two
regularization terms L7 and Lg, respectively.

J = Jx = ArLr — AsLs )
Ly = Dp(n(st), 7(s141)) 2

Ls = Dg(n(s¢),m(s;)) where s, ~ ®(s;). (3)
Both D7 and Dg are calculated based on the Euclidean dis-

tance. The Temporal Smoothness term Ly penalizes the JSA™
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(a) Temporal Smoothness.

(b) Spatial Smoothness.

Figure 1: Condition policies for smooth behavior in CAPS.

when the action of the next states sy are significantly dif-
ferent from the actions of the current states s;. The Spatial
Smoothness term Lg encourages the policy to take the sim-
ilar actions on the similar states s;, which are drawn from
a distribution ® around states s;. Originally, CAPS is ap-
plied to smooth the control of a quadrotor drone, with the
input being the inertial measurement unit (IMU) and the elec-
tronic speed controller (ESC) sensors. Therefore, to generate
similar states s}, the authors sampled from a normal distri-
bution, ®(s) = N(s,o) with standard deviation o, around
s¢. [Figure T|illustrates the Temporal Smoothness and Spatial
Smoothness in CAPS.

3 Our Approach

3.1 Image-based CAPS for Autonomous Car
Racing

CAPS was originally applied to smooth the control of a drone
with the internal states of the rotors. Then, to generate the sim-
ilar state s} in Spatial Smoothness, the authors used Gaussian
Noise to draw s} from a normal distribution around state s;
as described in[section 2] In this paper, we extend the idea of
using CAPS with image-based input and then use it to smooth
the control of an autonomous miniature car racing. Since our
approach use image as the input, therefore, to generate the
similar state s} in the Spatial Smoothness in CAPS, instead of
drawing from a normal distribution, we implement 6 different
domain randomization methods [1]: a) Random Brightness.
b) Random Contrast. ¢) Random Rotation. d) Salt and Pepper.
) Gaussian Blur. f) Random Cut-off. See for the
details of implementation of domain randomization methods.

In the experiment, we will study the impact of CAPS com-
ponents in We also analyze the sensitivity of
regularization weights of the Temporal Smoothness and the
impact of domain randomization methods in Spatial Smooth-
ness through the ablation study.

3.2 Sim-to-real Transfer for Autonomous Car
Racing

Sim-to-real transfer plays an important role in the sim-to-real
task. In sim-to-real tasks, we trained the policy in the simula-
tion and then directly apply it to the real-world environment.

To analyze the effectiveness of different sim-to-real transfer
approaches in autonomous miniature car racing, we compare
CycleGAN [11], a domain adaptation method, with different
domain randomization methods.
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Figure 2: Smoothness value of speed without CAPS (left) and
with CAPS (right).

4 Experiments

In the experiment, we first verify the performance of image-
based CAPS in[£.2] We then combine CAPS with different
sim-to-real methods to compare the effectiveness of sim-to-
real transfer for autonomous miniature car racing (@.3). Finally,
we conduct extensive experiments to analyze the impact of

CAPS components (#.4] 4.5 4.6).See for more

details about the experiments setup.

4.1 Evaluation Metrics

To evaluate the effectiveness of the smoothness method, we
use two following metrics:

1. Mean of selected steering angle: measure the angle dif-
ference when the agent decides to change the moving
direction.

2. Smoothness value: proposed by [9], a method based
on the Fast Fourier Transform frequency spectrum as

defined in[Equation 4. The lower the value, the higher

the low-frequency control and smoother the action.

S nﬂ;Mﬁ 4)

where M is the amplitude of the frequency component f;, and
the f, is the sampling rate. We set f; = 30 in this work.

To evaluate the performance of the car racing, we use two
metrics: (a) Average finishing lap time: the average time to
finish a run (in second). (b) Completion rate: the % number
of completion runs per all runs.

4.2 Smoothness with Image-based CAPS

In this experiment, we study the policy smoothing ability of
image-based CAPS. We train the agents in the simulation and
test them in the real environment. For the sim-to-real transfer
method, we applied CycleGAN for all agents.

Figure 2] to [4] show the comparison of the steering angle
and the speed with CAPS and without CAPS. The model with
image-based CAPS achieves more stable behaviors in the real-
world testing, therefore, significantly improves the smoothness
value in both speed and steering angle. More specifically, the
smoothness value of steering angle reduces from 93.47 to
20.39; and from 78.35 to 13.72 for smoothness value of speed.



Setting Speed range (m/s) Baseline Domain Randomization CycleGAN
Min Max w/o CAPS | with CAPS | w/o CAPS | with CAPS | w/o CAPS | with CAPS
Slow 1.125 8.0 0% 0% 0% 100% 73.33% 73.33%
Medium | 1.125 9.0 0% 0% 0% 26.67% 86.67 % 80.00%
Fast 3.000 9.3 0% 0% 0% 0% 13.33% 20.00%
Table 1: Completion rate in real-world testing.
Setting Speed range (m/s) Baseline Domain Randomization CycleGAN
Min Max w/o CAPS | with CAPS | w/o CAPS | with CAPS | w/o CAPS | with CAPS
Slow 1.125 8.0 NaN NaN NaN 32.47s 22.20s 17.36s
Medium | 1.125 9.0 NaN NaN NaN 24.33s 19.77s 16.05s
Fast 3.000 9.3 NaN NaN NaN NaN 17.20s 14.71s
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Table 2: Average finishing lap time in real-world testing.
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Figure 3: Smoothness value of steering angle without CAPS
(left) and with CAPS (right).
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(a) Steering angle of the car without CAPS.
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(b) Steering angle of the car with CAPS.
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Figure 4: Steering angle of the car with and without CAPS.

4.3 Smoothness Control and Sim-to-real Policy

Transfer

In this experiment, we compare the effectiveness of both the
action smoothing method and sim-to-real transfer methods.
We implement a version of Ape-X[4] with Soft-Actor-Critic
(SAC)[3]l without sim-to-real transfer method as the baseline.
We then combine different sim-to-real transfer methods with
CAPS as follows: (a) SAC only (without CAPS, without sim-
to-real transfer method). (b) SAC + CAPS. (¢) SAC + DR.
(d) SAC + DR + CAPS. (e) SAC + CycleGAN. (f) SAC +

CycleGAN + CAPS.

For the domain randomization methods, we apply three

types: Salt and Pepper noise, Random Reflection, Random
HSV Shift. The agent is trained in the simulation with the
sim-to-real transfer methods and then tested in the real track
15 times with three different speed settings. In the real-world
testing, we want to analyze the ability to stabilize the behaviour
of CAPS by increasing the speed of the car. There is no doubt
that running at a higher speed is more difficult for the agent
The speed setting is a range of
speed values that the car can take. We setup three different
speed settings as follow: (a) Slow: from 1.125 to 8 (m/s).
(b) Medium: from 1.125 to 9 m/s. (c¢) Fast: from 3.15 t0 9.3

to make proper decisions.

(m/s)

Table 1]and [Table 2] show the completion rate and average

finish lap time of all agents when testing in the real-world envi-
ronment. Without both CAPS and sim-to-real transfer method,
the agents cannot transfer the policies from the simulation to
the real environment. The agents used domain randomization
method cannot finish a track without CAPS; while CycleGAN
helps the agent complete tracks in both cases (with and with-
out CAPS). Moreover, with image-based CAPS, the behaviors
of the agents are more stable, therefore can finish a run faster
than the agents without CAPS. Especially, in the model that
used CycleGAN as the sim-to-real transfer method, CAPS
helps to reduce finish lap time from 22.20s to 17.36s when
running at slow speed setting, and from 19.77s to 16.05s for

medium and from 17.20s to 14.71s for fast, respectively.

4.4 Study The Impact of CAPS Components

In this experiment, we study the impact of CAPS components
on the objective function (Equation I)). We compare the finish-
ing lap time and the completion rate of the following models:
(a) SAC only. (b) SAC + reward engineering: Steering Angle
Penalty = 0.003 * abs(degree). (c¢) SAC + Temporal Smooth-
ness term. (d) SAC + Spatial Smoothness term. (e) SAC +
CAPS (Spatial + Temporal).

From the comparison result in we can see that
the Temporal Smoothness or the Spatial Smoothness individu-
ally improves the smoothness value. Moreover, the Temporal
Smoothness takes the more impact on the result of CAPS when
its performances are very close to the one with both Spatial

and Temporal terms.
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Figure 5: Compare the impact of CAPS components.

4.5 Temporal Smoothness Sensitivity Analysis

From the experiment above (@.4), we see that the Temporal
Smoothness has more impact on improving the agent’s per-
formance. In this experiment, we analyze the sensitivity of
the Temporal Smoothness in CAPS. We remove the Spatial
Smoothness term by setting the Ag = 0. We then vary differ-
ent choices of \r: 0.5,0.8, 1.0, 1.3.

shows that Ay = 1.0 gives the best result for both
smoothness value and finishing lap time; while increasing or
decreasing A value will drop the performance of the agent.

4.6 Spatial Smoothness Ablation Study

To implement Spatial Smoothness, we used 6 different random-
ization methods, as described in In this experiment,
we conduct an ablation study to investigate the influence of
the randomization methods on Spatial Smoothness. We indi-
vidually remove each randomization method to compare with
the agent that is trained with all randomization methods.

The experiment result in [Figure 7] shows that removing the
Gaussian Blur or Salt and Pepper caused a significant drop in
performance. Ablation of Random Brightness, on the other
hand, was insignificant and the result was not much different
from adding this randomization method. A possible expla-
nation is that the image captured in the simulation has less
noise than the image captured in the real world. Adding Salt
and Pepper helps the agent cover this type of image. More-
over, when the car runs fast, the captured images are easily
blurred; thus, training with more blurred images improves the
performance of the agent.

5 Conclusion

This paper presents image-based CAPS, an image-based reg-
ularizing action policies method to smooth the control of au-
tonomous miniature car racing. The model that combines
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Figure 6: Compare the sensitivity of Temporal Smoothness.
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Figure 7: Spatial Smoothness ablation study.

image-based CAPS and CycleGAN achieved the best result
in real-world testing, which reduces the average finishing lap
time; while improving the completion rate. Analyzing the im-
pact of CAPS components shows that the Temporal Smooth-
ness term takes more impact on the performance of CAPS. An
ablation study of training the Spatial Smoothness term figured
out that Salt and Pepper and Gaussian Blur are two important
randomization methods that influencing the result.
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APPENDIX

has more detail about using domain randomiza-
tion method in Spatial Smoothness in CAPS.

describes more about the environment setup in simulation and

real-world. |[Appendix C]specifies training settings in more
detail. [Appendix D|explains more about the implementation
of domain randomization and CycleGAN; while

shows more experiment results of image-based CAPS.

A Domain Randomization in Spatial
Smoothness of CAPS
When training the Spatial Smoothness in CAPS, to generate

the similar state s; in the Spatial Smoothness in CAPS, we
implement 6 domain randomization methods:

—

. Random Brightness: adjust the brightness of the image.

N

Random Contrast: adjust the degree to which light and
dark colors in the image differ.

3. Random Rotation: rotate the image with a random angle.
4. Salt and Pepper: add salt and pepper noise to the image.
5. Gaussian Blur: blur an image by a Gaussian function.
6

. Random Cut-off: random cut-off the image by overlaying
a black rectangle at a random position with random size
on the top of the image.

demonstrates our domain randomization methods
that we used to generate the similar states s} from states s.
Random Cutoff

Random Rotatation Salt and Pepper

i

Original

o

Gaussian Blur

Random Contrast

. = SR

Figure 8: Domain randomization methods.

_\

Random Brightness

B Environments Setup

In the real world, our track had two straight acceleration zones,
two square corners, three hairpin corners, and one s-curve. If
the car crosses the trapezoidal wall, it fails. In the simulation,
there are no reflections, noises, or car shake on the simulator
track, while the real track has distinct differences because of
the dynamic sunlight changing[Figure 9 shows our simulation
track and real track.

The autonomous miniature car is set up with a camera

placed on the top of the car. See The camera

captures RGB images with a resolution of 120x160 at 30fps.

The computing device used in the real car is NVIDIA Jetson
Xavier NX.

(a) Simulation track. (b) Real track.

Figure 9: Simulation track(left) and real track(right).

Figure 10: Simulation car(left) and real car(right).

C Network Structure and Training

We implement a version of Deep Neural Network Ape-X[4]
with Soft-Actor-Critic (SAC) with the following configu-
rations: number of workers is 3; N-step is 4; gamma is 0.98;
initial alpha is 0.3; batch size is 512; learning rate is 0.0003;
global buffer size is 45000; local buffer size is 2000.

The network’s input is the images captured from the camera
placed on the top of the miniature racing car, The
observation is an RGB image with a resolution of 120x160,
and the value of each pixel ranges from O to 255. We stack
the current observation with the previous observation as the
input. Therefore the input size is 120x160x6. The output are
the continuous values of steering angle and speed with a range

in [-1, 1]. illustrate our network structure used in

this paper.
Input Consz Conv2D ConvzD
8x8x32 ixdx6d |”| 2x3x64 }” ﬁ

Figure 11: Network structure.

Flatten
Jr
¢
DenseNorm
Dense
DGI'ISE

D Domain Randomization and CycleGAN
In the experiment in we compare the effective-

ness of domain randomization and domain adaptation when
combined with CAPS. Here, we show more examples of the
implementation of domain randomization methods and Cycle-
GAN. For the domain randomization methods, we apply three
types: Salt and Pepper noise, Random Reflection, Random
HSV Shift. shows examples of different domain
randomization methods. For the domain adaptation method,
we implement CycleGAN. shows our CycleGAN
result for translating between the simulation and real images
and vice versa.



Original Salt and Pepper Random Reflection Random HSV Shift Without CAPS With CAPS

— — r ‘ r— Steering angle | 93.47 20.39

Table 3: Compare the smoothness value of steering angle and

Figure 12: Domain randomization methods for sim-to-real ~ speed with CAPS and without CAPS.
transfer.

Sim - Real Reality - Fake Sim - Fake

(a) From left to right: the simulation image; the generated real
image by CycleGAN; the reconstructed simulation image.

-ﬁ

Reality - Real Sim - Fake Reality - Fake

(b) From left to right: the real image; the generated sim image
by CycleGAN; the reconstructed real image.

Figure 13: CycleGAN results.

_ speed

20 P
Step

(a) Speed of the car without CAPS.
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(b) Speed of the car with CAPS.

Figure 14: Speed of the car with and without CAPS.

E More Experiment Results of Image-based
CAPS

In this appendix, we show more experiment results of image-
based CAPS. [Figure 14]is the comparison of the speed with
CAPS and without CAPS. shows the smoothness val-
ues of steering angle and speed after training model with and
without CAPS. CAPS significantly improves the smoothness
value in both speed and steering angle.
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