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Abstract
Autonomous racing represents a uniquely challeng-
ing control environment where agents must act
while on the limits of a vehicle’s capability in or-
der to set competitive lap times. This places the
agent on a knife’s edge, with a very small margin
between success and loss of control. Pushing to-
wards this limit leads to a practical tension: we
want agents to explore the limitations of vehicle
control to maximise speed, but inadvertently go-
ing past that limit and losing control can cause ir-
reparable damage to the vehicle itself. We provide
a model predictive control (MPC) baseline that is
able to, in a single lap, safely adapt to an unseen
racetrack and achieve competitive lap times. Our
approaches efficacy is demonstrated in simulation
using the Learn To Race Challenge’s environment
and metrics. [Herman et al., 2021]

1 Introduction
Racing is a hallmark of automotive innovation. Competitors
and manufactures alike push the very limits of physical ca-
pability and design to edge out the slightest of advantages
over their opponents. Gains at the top level of motorsport
are often realised in hundredths of seconds, but can have sig-
nificant impact on the drivability, safety and efficiency of
road cars. Mercedes-Benz lists a slew of technical innova-
tions used in their road cars that are directly a result of their
Formula One participation. [Colquhuon, 2021] In this spirit,
racing leagues for vehicles piloted by autonomous systems
have started across the world. [Balaji et al., 2019; O’Kelly
et al., 2019; Goldfain et al., 2018; Srinivasa et al., 2019;
Wischnewski et al., 2022] Competitors vie to create the best
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platforms and automated control in the never ending quest
for faster lap times. However, as motorsport hall of fame
inductee Sir Stirling Moss advised, ”To achieve anything in
this game you must be prepared to dabble in the boundary of
disaster.”. This presents a natural conflict. In our quest for
speed, the edge of disaster is flirted with and often indulged,
causing catastrophic damage to valuable racing platforms.
[Tingwall, 2021; Fingas, 2021] It is therefore desirable to
design control systems that, much like a human drivers, pro-
gressively explore the physical limits of the platform in a way
that minimises risk. To this end, the Learn To Race Challenge
encourages competitors to not only develop autonomous con-
trol capable of racing pace, but penalises systems for unsafe
behaviour. [Herman et al., 2021] In addition to a focus on
safety, the challenge limits available information from the en-
vironment and tests the few-shot learning capability of sys-
tems. Observations from the sim at evaluation time are im-
ages from a predefined RGB camera system and the current
vehicle speed. This requires systems to infer spatial informa-
tion about the vehicles position exclusively from visual in-
formation. Systems adaptability to new tracks is evaluated by
providing a one hour practice session where the system is able
to drive around an unseen track. During this practice win-
dow, safety infraction penalties are accumulated while any
automatic adaptions are made by the autonomous system to
adapt to the new environment. Three factors: safety, limited
observation and few-shot generalisation provide a uniquely
challenging environment to develop autonomous control.

Although the challenge encourages submissions to explore
systems leveraging safe reinforcement learning our initial ef-
forts where directed toward producing a baseline of more
tradition approaches to autonomous control which could be
built upon. Unfortunately the majority of these techniques
rely on knowledge of the track layout and accurate localisa-
tion around the circuit; two things this challenge restricts. As
a result we provide details of the adaption of several control



solutions tailored to the restrictions specific to the 2022 Learn
To Race Challenge. These include a naive Follow-The-Gap
driver, a model predictive controller (MPC) that uses local
perception and a MPC based system that uses localisation
and mapping to aid control (MPC++). Our baseline MPC
solution achieved competitive results in the Learn To Race
Challenge. The implementation of MPC++ was finalised af-
ter the conclusion of the submission deadline and therefore
was not officially in contention.

2 Related work
Our approach to solving the autonomous racing problem
was to follow the simple and effective autonomous driving
pipeline of perception, mapping, localisation, planning, and
control. Initially we worked at solving and testing each of
these problems independently to build an entire working sys-
tem. With this modular approach, we could improve and it-
erate on each subsystem without having to rebuild the entire
system, like in end-to-end control systems.

The perception module was inspired by the work of [Lo-
quercio et al., 2021], which presented the benefits of abstract-
ing perceptions from raw sensor inputs to a simplified and
scene independent format. Our control systems were inspired
by [Liniger et al., 2017; Kabzan et al., 2019a] which utilise
model predictive controllers for autonomous racing. Liniger’s
MPC has been used to both control vehicle behaviour at the
limits of grip at 1/43rd scale and in Formula SAE races. [Lin-
iger et al., 2014; Kabzan et al., 2019a] Augmenting these
controllers with learning has been explored in [Kabzan et al.,
2019b]. They achieve improved dynamic control using a ma-
chine learning model to predict refinements to MPC output.
In the work explored the vehicle’s location is known or there
are discrete visual markers present—such as traffic cones—
that enable robust point matching; producing high accuracy
localisation.

In this challenge we must handle vehicle localisation with
sparse visual features, see Figure 1, and construct our own
map of the circuit. This leads to more uncertainty in planning
and control than these systems are capable of dealing with in
their current form. Ultimately, a successful solution to this
challenge must be built with this uncertainty in localisation,
planning and control in mind.

3 Methodology
In this section we outline the inner workings of our au-
tonomous racing agent. We first outline a naive Follow-The-
Gap agent in Section 3.1 which achieved a top 10 position in
stage-one of the competition. Then we provided details of a
MPC based agent in Section 3.2 which achieved competitive
results in stage-two of the 2022 Learn To Race Challenge.
Additionally, a final system denoted as MPC++ which was
not submitted for evaluation is presented in Section 3.3.

3.1 Follow-The-Gap Driver
As an initial pilot test for control, based on our road seg-
mentation model, we implemented a naive Follow-The-Gap
driver. This controller uses the driveable area segmentation
mask of the road in front of the vehicle projected onto the
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Figure 1: Image captures showing the visual features around Angle-
sey from the vehicles front camera (a) after turn 1 (b) after turn 2 (c)
after turn 5 (d) before turn 6

ground plane to plan a straight line trajectory while main-
taining a safe distance from all track limits, see Figure 3(b).
Acceleration and steering inputs to the vehicle are set pro-
portionately to the length and angle of the trajectory respec-
tively. The constants of proportionality used for this driver
where manually tuned until desirable driving behaviour was
achieved. To extract a representation for the track limits in
front of the vehicle we developed a Perception module.

3.1.1 Perception
Perception is responsible for processing camera images into
a representation of the local limits of the road. This abstrac-
tion to track limits is used by all other modules. To achieve
this a combination of deep learning and handcrafted post-
processing is used. Using ground truth segmentation maps
provided by the simulation two different segmentation mod-
els where trained. For the Follow-The-Gap and MPC so-
lutions a Feature Pyramid Network [Lin et al., 2017] with
an EfficentNet [Tan and Le, 2019] backbone was used. In
MPC++ we substituted this for Deeplabv3+ [Chen et al.,
2018] with a ResNet-18 [He et al., 2015] encoder. Both
where trained to classify whether a given image pixel belongs
to the drive-able portion of the race track or not. Modelling is
preformed using PyTorch [Paszke et al., 2019] on a bespoke
dataset we collected from the simulation environment. For
more details on model training see Appendix A This produces
a binary mask representing the drive-able region in front of
the vehicle. Three sets of points are extracted from the mask
that are representative of the left and right track limits in ad-
dition to a set of points along the centre of the drivable area.
For the left and right track limits the left and right most pix-
els classified as drive-able for each row in the mask are se-
lected. Similarly, centreline points are extracted by selecting
the middle pixel in a given row classified as drivable.

Track limits are then projected from image coordinates
(u, v) onto the ego-centric ground-plane (xego, yego), where
xego and yego represent lateral and longitudinal displacement



from the vehicle centre respectively. We utilise a homogra-
phy matrix to map points from camera to ego-centric vehicle
coordinate frames:

s

[
xego
yego
1

]
= H3×3 ×

[
u
v
1

]
To estimate the homography matrix we must have a minimum
of four corresponding points between the camera and ground
plane. Using the known camera parameters from the simu-
lation environment the intrinsic and extrinsic camera calibra-
tions can be found:

s
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where cx and cy are the centre positions of the image plane in
pixels. The focal lengths fx and fy are calculated using the
field of view and the image size:

f =
w

2× tan(FOVh/2)

where w is the image width in pixels and FOVh is the hori-
zontal field of view.

Points extracted and transformed using this technique are
variable in both density and number. For example, track lim-
its closer to the camera have more points compared to those
further away. This method also assumes that the ground and
camera plane remain fixed relative to one another. Addi-
tionally, representing track curves on a squared grid results
in jagged edges in extracted lines. These factors can mean
even a perfect track segmentation can have errors induced
from vehicle movement and track elevation changes leading
to problems further down the pipeline. To remedy some of
these factors, a third order polynomial is fit to each set of
extracted points separately and new points are recalculated
from the resulting equation. Figure 2 shows an example of
how the perception system translates images into a represen-
tation of the local track. These three sets of points—left, right
and central—are the representations used by the other subsys-
tems.

3.2 MPC
For this solution, the Follow-The-Gap controller is replaced
with one using MPC. Here we detail how the control problem
can be framed as an optimisation problem and the various
modifications required to enable operation with local percep-
tions. Herein we refer to the part of the system responsible
for translating track-limit perceptions to steering and acceler-
ation inputs.

3.2.1 Control
We modify the off the shelf MPC controller [Mats Steinweg,
2020] which utilises the quadratic program solver [Stellato et
al., 2020]. This takes a representation of driveable area in
ego-centric vehicle coordinates from the front cameras (Sec
3.1.1) i.e. the local road view, and outputs a series of control
inputs. The resulting trajectory minimises local segment time

Figure 2: An example of the perception module processing a camera
image into a road segmentation mask, then extracting track points
from the mask and smoothing the extracted track points.

and deviation from a reference path while abiding by safety
and vehicle constraints.

As track limit perceptions are in a ego-centric coordinate
frame we convert these to a spatial representation. The spa-
cial representation used contains the curvature, κ = 1/r, of
the path, distance between each of the points, and the track
width. Using this information, a path that minimises heading
error, displacement error, and time taken to travel between
points is found. Each error term has an associated weight
which is used to tune the vehicle’s behaviour. For example,
by weighting time highly paths which do not follow the ref-
erence path exactly become permissible. This allows devia-
tion from the centre of the racetrack, prioritising paths that
are more time efficient and therefore faster. Alternatively, if
we increase the weighs for displacement and heading error
the vehicle will follow the detected centreline closely, at the
expense of speed.

Calculating control can be broken into two main steps:
First, a desired speed profile is calculated which constraints
the maximum and minimum acceleration and lateral accel-
eration based on track curvature. Second, vehicle yaw and
velocity is optimised for each reference track point. The yaw
error, track error and time are constrained such that only phys-
ically possible solutions are produced. Formally, the optimal
control problem is defined as follows:

minimize
v,ψ

γp

i=n∑
i=0

||pi − ref pi||+ γtT

+γv||∆v||+ γs||∆s||
subject to vn ≤ vend,

|pi − ref pi| ≤
w

2
,

vmin ≤ vi ≤ vmax,

smin ≤ si ≤ smax,

v0 = v,

ψ0 = 0

where γp, γt, γv and γs are the weights for position error at
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Figure 3: (a) Input camera image (b) Extracted track limits (black) and predicted path (red) from Follow-The-Gap driver control (c) Extracted
track limits (black) and predicted path (red) from MPC control

each control step, overall time, magnitude of velocity change
and magnitude of steering change respectively, p is the vehi-
cle position and ref p is the desired position, T is the time to
complete the trajectory, v, s and ψ are the vehicle’s velocity,
steering angle and yaw, w is the track width, vend is a max-
imum terminal velocity and n is the number of steps in the
time horizon.

Once the optimisation problem is solved steering angles
are computed using a bicycle model:

δ = arctan(ψ × wheelbase)

Acceleration inputs are formulated as the difference between
the desired and reference speed:

a =
vref − v

β

where β can be changed to modify how aggressively acceler-
ation is changed. Figure 3 shows an example of the vehicle
trajectories calculated using the Follow-The-Gap and MPC
based methods.

3.3 MPC++
This version of our system enables control to take into ac-
count larger context than what is available from local percep-
tions. Steering inputs remain entirely dependant on the local
track limit perception. However, velocities can now be set
with a look ahead much further than is often available locally
and in a way that is robust to potentially erroneous percep-
tions. To do this we add two additional modules responsible
for localisation and mapping. Mapping is done in the one
hour practice session available prior to racing. The resultant
map is then used to localise the vehicle while racing. Once
vehicle position is approximately known control of velocity
is ceded to references calculated from the map.

3.3.1 Mapping
Our agent has no knowledge of circuit layout prior to setting
a lap time. A mapping algorithm is used to create a repre-
sentation of the track which has two key benefits. It enables
the location of the vehicle within the map to be estimated us-
ing the Localisation module, detailed in Section 3.3.2, and

allows for pre-computation of reference velocities informed
by the global structure of the circuit. In cases where the Per-
ception module’s line-of-sight is limited or observations are
of low quality, these reference velocities provide an alterna-
tive signal to set the vehicle’s speed.

To create this map, during practice, the MPC controller
with conservative control constrains and a speed limit of
20ms−1 is used to circumnavigate the track. These control
settings are set such that the agent will safely complete a full
lap and move slowly enough that detailed track limit points
are able to be collected. Points used to describe the track
limits can be gathered over the course of one or more laps.
This results in two collections of points corresponding to the
outside and inside limits of the circuit. As these points are
collected via the perception module, overlapping and dupli-
cate points are appended sequentially; resulting in a out of
order set. To recover ordering between sequential points the
Pyconcorde traveling salesperson problem solver was used.
[Vankerschaver, 2017] The now ordered points are smoothed
using a Savitzky–Golay filter. [Savitzky and Golay, 1964]
From the pair of track limits a centreline is also interpolated.
In our case, the pair of track limit’s detection spacing varies
over the course of collection, so bipartite matching of in-
side and outside points was not possible. Instead, track limit
points are matched to each other by finding their closest point
on the opposing set of points. Once matched, the pair’s mid-
point is used as a centreline point. Using the centreline a se-
ries of reference velocities for the circuit are calculated which
take into account the maximum lateral acceleration and track
curvature. To do this we used the velocity profile optimi-
sation, discussed in Section 3.2.1, to calculate the reference
velocity assigned to each centreline point. Velocity profile
optimisation takes into account the vehicle’s maximum lat-
eral acceleration, acceleration and braking capabilities. The
results of this processes are shown in Figure 4.

3.3.2 Localisation
In order to utilise the reference speeds calculated for each po-
sition around the circuit, we need to know where the vehicle
is. To estimate the vehicle’s track position our localisation



Figure 4: Mapping results from our agent at training time with computed max reference speeds

module uses track limit detections and a particle filter. More
specifically, particles begin uniformly spread through the pre-
viously computed circuit map, see Section 3.3.1. At each time
step, particles positions are progressed using vehicle control
input, a dynamics model and random noise:

xt+1 = xt + ẋ× dt,

ẋ =

[
v × cos(ψ)
v × sin(ψ)
v × tan(δ)/b

]
where x and b are the vehicle’s pose and wheelbase respec-
tively.

Observations in the form of track limit detections from the
Perception module are transformed to each particle’s loca-
tion. Using a k-d tree particle’s closest points in the map are
found and a local section of the map’s track limits in front
of the particle are extracted. These points are lifted from the
map sequentially under the assumption that both the observed
track limits and map points are equally spaced. In practice
this is not always the case. We ensure the observed track
points are over sampled and then uniformly drop points until
the observation and map densities are equivalent. The ℓ2 er-
ror between observed detections and map points is evaluated
and used to score and remove particles.

Particles are removed from the filter if they: they fall out
from within the track limits of if the track limit matching
score is too low. New particles are generated by resampling
particles in the filter. Each particle is sampled with a probabil-
ity proportional to their associated score. A particle’s score is
calculated by normalising the value of a normal distribution’s
probability density function evaluated at the observation er-
ror, E ∼ N(0, σ). This manifests as particles with no error—
at the mean of the distribution–being assigned the highest
score of 1, with scores decreasing as error increases. The rate
of score decrease is negatively correlated with σ. This leads
to low observation error particles being resampled more fre-
quently than their high error counterparts. Additionally, each
particle’s score is used to weight its overall contribution to
the estimated position of the vehicle. These two factors en-

able the filter to progressively refine the collection of particles
it maintains; converging to an estimate of the vehicles loca-
tion on the circuit. To detect when the filter has converged
we use a threshold on the maximum distance a single parti-
cle can be away from the current estimated position. Once
all particles are within this distance we consider the filter to
be converged. Once converged, the estimated position can
be used to look-up pre-calculated reference velocities from
the map. These reference velocities enable vehicle control to
preempt the circuit’s profile further into the future than what
is visually available from its cameras.

4 Evaluation
To compare different control systems lap times set on three
different racetracks where used. Thruxton and Anglesey Na-
tional where provided by the competition organisers for local
testing and development. Examples of the track’s layouts can
be seen in Figure 4. Las Vegas Outfield North was tested on
via submission to an evaluation server. Laps are timed with
the vehicle starting on the start-finish line accelerating from a
stand still.

Lap Times (m:s:ms)
Driver Thruxton Anglesey Las Vegas
Follow-The-Gap 2:13:835 1:20:187 1:45:388
MPC 1:55:708 0:53:837 1:19:148
MPC++ 1:38:950 0:44:601 -
Tuned MPC++ 1:29:516 0:43:204 -
Tuned MPC++ No Delay 1:29:136 0:42:002 -

Table 1: Observed lap times around the three racetracks for different
versions of our solution. Follow-The-Gap is provided as a naive con-
trol baseline which was submitted for stage one. MPC uses local per-
ceptions only, submitted for stage two. MPC++ uses localised pace
notes with parameters that work across all tracks. Tuned MPC++
is manually tuned to be faster around each track with settings that
may not generalise to other tracks. No Delay indicates that the 10Hz
input/observation frequency is turned off.
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Figure 5: Each image represents a pair of ground truth and estimated local track limits from the localisation module. Ground truth track limits
are shown in black and estimations in red. (a) Localisation along a straight (b) Reaching a corner early (c) Error in yaw approximation

5 Results
Evaluation of each outlined system of control are shown in
Table 1. All control systems explored in this work recorded
no safety infractions. Due to the competition shutting its eval-
uation servers we where unable to evaluate MPC++ on the
Las Vegas racetrack.

6 Discussion
Follow-The-Gap driver’s naive control design is superseded,
−18.127s (13.5%), −26.350s (32.9%) and −26.24s (24.9%)
on Thruxton, Anglesey and Las Vegas respectively, by the
MPC control using local perceptions to guide its trajectory.
The difference in lap time between the two systems is ob-
served to be correlated with the number of tight corners in
a given racetrack. In the collection of tracks used Thruxton
contains more sweeping corners with very few that are tight
and slow. Conversely, Las Vegas contains several tight chi-
canes and hairpins. Due to the Follow-The-Gap driver pro-
jecting a straight line through the segmentation mask, tra-
jectories that deviate significantly from this template will be
harder to achieve, Figure 3. In the case of a sweeping corner
or long straight this would not be much of an issue. However,
as is the case of approximating a circle from a polygon, ma-
neuvering through a tight hairpin requires many small piece-
wise linear trajectories. As the controller sets its speed ac-
cording to the length of the trajectory this has the effect of
jagged and slow control through such corners. As the MPC
controller is able to plan control inputs at multiple control
points along a given section of track, steering and accelera-
tion is much smoother in comparison.

Despite this improvement the local perception MPC con-
troller suffers from a lack of foresight. As it is restricted to
using its camera to predict a path through the up coming sec-
tion of road, it is unable to deal with situations such as a crest
in the middle of a long straight. Ideally in such a situation
the vehicle would continue without adjusting its input with
the knowledge that the straight continues over the crest. The
local MPC controller however needs to slow down in antic-
ipation that there may be the sharpest turn on the track be-
yond the crest, as it has no understanding of its position and
track geometry. Quantitatively we demonstrate that the abil-
ity to look ahead provides a significant improvement over the
MPC using local perceptions. MPC++ creates and localises
to a map of the circuit. By adding this an improvement of
−16.758s on Thruxton and −9.236s Anglesey was observed;

a reduction in lap time of 34.885% and 35.586% respectively
when compared to follow-the-gap.

The results shown for MPC++ in Table 1 are for gen-
eral optimisation parameters that work well on both Thrux-
ton and Anglesey. To demonstrate the potential for an auto-
mated adaption system we manually tuned two separate sets
of parameters specific to either Thruxton or Anglesey, de-
noted tuned MPC++. With limited experimentation, further
improvements of −9.434s on Thruxton and −1.397s on An-
glesey were found. Overall, a tuned MPC++ is capable of
44.7% and 38.2% faster laps around Thruxton and Angelesey
respectively. We think that by tuning MPC++ the behaviour
around longer sweeping corners was improved while tighter
corners were still challenging to perceive and control around.
Since Thruxton has more of the former we see a larger im-
provement in lap time relative to Anglesey. Automation of
this tuning via learning or model refinement is therefore rec-
ommend as a line of future enquiry.

6.1 Runtime analysis
Although we are limited to 10Hz control and perception this
assumes that our model and calculations are instantaneous.
This is because the observation delay is called as a sleep
function in the evaluation server’s code base. For example
if our code takes 0.04s to run this would result in a control
frequency of 7Hz. Without this delay control control could
be calculated and applied at 25Hz. For this reason we fo-
cused on our code having the lowest run time possible as this
has a great effect on the controllers ability to correct oversteer
and poor control inputs. One step of the MPC++ controller
takes 0.025s and has the ability to run at 40Hz. We found
that since the sleep function runs on a separate thread we can
run calculations during this time which means we were able
to execute at 9.5Hz with observation delay enabled.

6.2 Limitations of our system
We observed that the detected track limits from the perception
system (Section 3.1.1) had large effects on the control output
and performance of the vehicle. Due to using a static transfor-
mation from camera to ground plane error is introduced as the
projection changes when the vehicle squats, rolls, or dives.
This also occurs when the elevation of the track changes,
which occurs on several occasions around the Thruxton cir-
cuit. This could lead to the track limits spanning much further
ahead of the vehicle than they are, resulting in the vehicle ac-
celerating faster than what is safe. Additionally, localisation



accuracy is impacted as calculation of the error between the
observed track limits and the map’s is used in particle scoring
and elimination.

Our system uses dead-reckoning and abstracted visuals for
localisation. This allows the system to go faster through
straights by knowing the track ahead, see Figure 5(a). Since
there we where unable to include meaningful visual features
as part of the localisation we abstracted camera images to a
track limit representation. The lack of visually salient fea-
tures is discussed in Section 6.3. Unfortunately, Cartesian
points provide much less information about match quality
than re-observations of a know visual landmark. This causes
our localisation module to lack precision when approaching
and travelling through corners, see Figure 5(a,b). If in the fu-
ture visual features such as barriers, signs, grandstands, build-
ings, and trees are added revisiting SLAM algorithms would
likely lead to significant improvements in localisation accu-
racy.

Due to this lack of accuracy we where unable to use the
mapping and localisation module to drive from directly. For
these reasons our control is restricted to only the scene in
which the perception module provides. In this challenge we
do not have access to GPS localisation, inertial measurement
unit data, or wheel speed data. This adds a considerable chal-
lenge for estimating if a given control input has produced the
anticipated vehicle movement. The particle filter our locali-
sation module relies on only uses knowledge of the observed
track limits, control inputs, predicted behaviour, and that the
vehicle has not left the track. For this reason we must have a
considerable amount of uncertainty into the particle filter for
it to converge and maintain localisation.

In its current form the MPC++ solution is quite fragile.
This is due to a combination of parameters that are required
to be tuned and interplay with one another in unexpected
ways. One such example, discovered during experimentation
for this work, is that the speed at which mapping is done has
a significant impact on map quality and thus reference veloc-
ities, localisation, and consequently control. We believe this
can be addressed with map post-processing that would ensure
consistency. Many of the parameters used to configure local-
isation and the MPC solver have been manually tuned based
on empirical observation. It is not necessarily clear why these
weights are the values which result in desirable behaviour and
understanding the range and scale of values is often a process
of trail and error. Behaviour of the MPC solver is also not
consistent under a uniform scaling of all term weights; in-
dicting the optimisation problem is non-linear. Due to this,
we wish to formulate the tuning of these parameters as a safe
learning problem or use the MPC as a control prior for a deep-
controller.

Presently, MPC speed controls are not used once the ve-
hicle has been localised. Ideally, map reference velocities
would be used to inform the MPC so that control inputs are
predicted in advance. This ensures that the desired veloc-
ity is achieved at its associated track position, rather that an
requested when the vehicle is at that position. As an approx-
imation to this desired behaviour, reference speeds given to
the vehicle are from points in the map a fixed distance ahead
of the vehicle’s current position. This ensures acceleration

inputs are applied prior to a given point, enabling transition
to the velocity required at the future point.

6.3 Limitations of the challenge
There where some aspects of how the challenge was setup
that caused friction during the development of solutions we
would like to address in the spirit of review and refinement.
Somewhat arbitrarily both receiving observations from the
simulation and providing control input to the vehicle was lim-
ited to 10Hz. Although it is understood that synchronisation
of input and output is important we believe it would be bet-
ter to leave this task in the hands of competitors. Primarily
our concern stems from the limitations around control input
which prevent the use of granular inputs to make smoother
changes to the vehicle’s state. By limiting input and observa-
tion to 10Hz each time control is set it is used by the vehicle
for the next 100ms, preventing the use of a PID controller
or other such method of smoothing inputs to the car. This
compounds when running on the prescribed evaluation server,
which executes both simulation and solution code slower than
our development machines, as if a control calculation takes
longer than 100ms to run we must wait until the next 100ms
window to update observations and control. Not only does
this produce behaviour that rapidly jerks the vehicle, it does
not provide sufficient time for control solutions to correct
oversteer. On this note, modern car safety systems detect and
respond to loss of traction using on-board sensors. [Ivanov
et al., 2015] When operating vehicles at racing pace it is cru-
cial to control oversteer when cornering and apply threshold
braking; both of which require an understanding of traction
limits. It is therefore hard to justify the challenge’s decision
to restrict access to this information, given its ultimate goals
of safe racing. The limited control over the camera’s used
on the vehicle also created tension that was somewhat reme-
died by the introduction of the multi-camera league. We do
understand that the positioning of the camera’s maybe lim-
ited by the vehicle’s design, but we see no reason that the
resolution, rotation and lens type should be fixed. By allow-
ing camera parameter customisation specific solutions could
tune cameras for specific goals. For example, if the camera’s
goal is to observe track limits a developer might prioritise a
wider field-of-view, minimise capturing vehicle bonnet and
sky. Some potential solutions where not able to be explored
due to the nature of the simulation environment.

Initially we gravitated towards utilising simultaneous lo-
calisation and mapping (SLAM) algorithms for our locali-
sation. We found that off the shelf monocular SLAM algo-
rithms failed within the competition constraints. This is likely
due to the limited visual features, especially close to the ve-
hicle, and limited field of view, refer to Figure 1 and Figure
2. This limitation effects both the diversity of potential so-
lutions and a significant gap between solutions developed for
the simulation versus those that are possible in reality. Fi-
nally, we would like to see the criteria of exceeding the track
limits expanded. Currently vehicles may clip the white line
with a single wheel and are considered to have committed a
safety infraction. Maximising track limits is a corner stone
of racing enabling significant gains in lap time. This practice
decreases the cornering radius of turns enabling them to be



taken with less lateral acceleration. In our view this is ulti-
mately safer then taking a different line with a tighter radius,
requiring harsher control inputs. Due to this we recommend
the infraction be changed to accommodate the use of curbs
on the track and allow for situations where two wheels maybe
outside of white lines by some margin.

6.4 Future work
Our baseline can achieve competitive results on the supplied
tracks under the simulation constraints. Much like our de-
velopment thus far there are modules and improvements we
would like to add in our quest to achieve optimal lap times.

Addressing the current limitations of our system would be
first and foremost. Reliable and Accurate track limit extrac-
tion is needed for better trajectory planning and increased
agent confidence for upcoming control. Mapping and lo-
calisation require suitably fine grained location information
to enable control to follow a map based racing line, result-
ing in lower lap times. Currently, the control system has no
knowledge of grip and how it is traded between control in-
puts. Building this knowledge into the system through vehi-
cle dynamics would likely yield improved safety and speed.
Additionally, a learning based approach to MPC controller
tuning would enable the automatic adaption of control pa-
rameters to unseen circuits.

Currently our system does not have a planning module
which has a further look ahead than the MPC controller. This
kind of planning module could enable more efficient trajecto-
ries through corners, position the vehicle within the track lim-
its to reduce cornering radius, and dynamically adjust control
in response to vehicle state.

7 Conclusion
In this paper we have presented a modular autonomous con-
trol system for racing which can be incrementally improved
on. The Learn To Race Challenge presented unique problems
which prevented the application of previous autonomous rac-
ing solutions. We have demonstrated the efficacy of a sim-
ple perception-mapping-localisation-control pipeline to con-
trol vehicles at racing pace safely. Throughout the stages
of this challenge we have built upon our previous solutions
adding and improving modules. This approach has proved to
be competitive with other agents submitted to the challenge.
In the future we would like to build additional machine learn-
ing components into our solution to see the agent safely push
the vehicle to the limit and achieve optimal lap times.
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A Modelling
All models where trained at an input resolution of 384x512
in RGB colour space with no image augmentation.

Figure 6: Example segmentation predictions from Deeplabv3+ us-
ing an output stride of 16 (left) and 32 (right)

A.1 EfficientNet Feature Pyramid Network
The EfficinetNetV2 based FPN was trained using the Adam
optimiser [Kingma and Ba, 2014] and Dice loss [Sudre et al.,
2017]. A learning rate of 4E-4 was used for 100 epochs with a
batch size of 2. The model with the lowest loss was selected
for deployment. We observed an average inference time on
batches of 3 images of 15.01 ms on an NVIDIA RTX3090.

A.2 ResNet Deeplabv3+
Deeplabv3+ was trained using stochastic gradient decent
(SGD) and cross-entropy loss. SDG was configure to use a
learning rate of 0.03, momentum of 0.9 and weight decay of
5E-5. A learning rate of 0.003 was used for 30 epochs with
a batch size of 8. The learning rate was reduced by a fac-
tor of 0.1 each time the validation loss did not change more
than 1E-4 for 3 epochs. The model weights present after the
full number of epochs was selected for deployment. As all
variants explored fit data extremely well–with average IOU
scores larger than 98%—ResNet-18 with an output stride of

ResNet Variant Inference Time (ms)
Output Stride 18 32 50 101

8 13.08 22.78 41.97 64.83
16 5.28 7.4 15.83 21.98
32 3.74 5.6 11.46 18.01

Table 2: Average inference times observed on batches of 3 images
for Deeplabv3+ models

https://github.com/matssteinweg/Multi-Purpose-MPC
https://github.com/matssteinweg/Multi-Purpose-MPC
https://github.com/jvkersch/pyconcorde


16 was selected as a trade off between inference time and
mask quality, see Table 2. Although, an output stride of 32
would have been faster, qualitative inspection of the masks
found that the large amount of up-sampling required caused
over smoothing in masks that would clip into the car’s silhou-
ette, see Figure 6. We observed an average inference time on
batches of 3 images of 5.28 ms on an NVIDIA RTX3090.
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