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Abstract

The detection of road agents, such as vehicles
and pedestrians are central in autonomous driv-
ing. Self-Supervised Learning (SSL) has been
proven to be an effective technique for learn-
ing discriminative feature representations for im-
age classification, alleviating the need for labels,
a remarkable advancement considering how time-
consuming and expensive labeling can be in au-
tonomous driving. In this paper, we investigate the
effectiveness of contrastive SSL techniques such
as BYOL and MOCO on the object (agent) detec-
tion task using the ROad event Awareness Dataset
(ROAD) and BDD100K benchmarks. Our experi-
ments show that using self-supervised pretraining,
we can achieve a 3.96 and 0.78 percentage points
improvement on the AP50 metric on the ROAD
and BDD100K benchmarks for the object detection
task compared to supervised pretraining. Exten-
sive comparisons and evaluations of current state-
of-the-art SSL methods (namely MOCO, BYOL,
SCRL) are conducted and reported for the object
detection task.

1 Introduction
Autonomous driving as a subject has been steadily rising
in popularity in recent times due to important advances in
computer vision and machine learning. As completely au-
tonomous self-driving cars appear imminent, numerous pub-
licly available datasets aimed at evaluating various aspects
of the problem have been released [Singh et al., 2022;
Sun et al., 2019; Wilson et al., 2021]. Analyzing and making
sense of this ever-increasing wealth of data becomes a must
both for companies active in this space and for researchers,
with a particular focus on public safety.

As cameras are the most commonly used sensors, com-
puter vision plays an essential role in continuously study-
ing new ways of addressing fundamental perception problems
relevant to autonomous driving, such as object detection and
segmentation. The cost of manually labeling the necessary
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data, however, seriously limits the range of conditions avail-
able for studying in the self-driving context. In this regard,
contrastive self-supervised learning (SSL) has been success-
fully shown to be a promising solution, as it achieves a perfor-
mance comparable to that of supervised learning while having
at the same time the ability to mitigate the cost of data label-
ing, on benchmarks such as ImageNet [Deng et al., 2009] for
image classification and COCO [Lin et al., 2014] object de-
tection.

In our work, we provide an extensive analysis of con-
trastive self-supervised learning methods for object detec-
tion in the autonomous driving setting. We show com-
petitive results on object detection accuracy (e.g. vehicle,
pedestrian...) using state-of-the-art self-supervised pretrain-
ing methods such as MOCO [He et al., 2020], BYOL [Grill
et al., 2020] and SCRL [Roh et al., 2021] compared to
supervised pretraining on ImageNet large-scale benchmark.
We test the performance of object detection using ROAD:
The ROad event Awareness Dataset [Singh et al., 2022] and
BDD100K [Yu et al., 2020] autonomous driving benchmarks.
Both datasets provide data with diverse weather and illumina-
tion conditions to test robustness of methods.

2 Related Work
2.1 Representation Learning
Supervised and Unsupervised Learning. Discriminative
approaches to learning representations learn a representation
by directly modeling the conditional distribution p(y|x) with
a parametrised model that takes as input the data sample x
and outputs the label variable y. Discriminative modeling
consists of an inference step that infers the values of the la-
tent variables p(v|x), and then directly makes downstream
decisions from those inferred variables p(y|v).

Since a self-supervised discriminative model does not have
labels corresponding to the inputs like its supervised counter-
parts, the success of self-supervised methods come from the
elegant design of the pretext tasks to generate a pseudo-label
ŷ from part of the input data itself [Misra and van der Maaten,
; Dosovitskiy et al., 2014; Zhang et al., 2017]

Contrastive Representation Learning. Contrastive repre-
sentation learning can be considered as learning by compar-
ing. Unlike a discriminative model that learns a mapping



to some (pseudo-)labels and a generative model that recon-
structs input samples, in contrastive learning, a representation
is learned by comparing the input samples.

Instead of learning a signal from individual data sam-
ples one at a time, contrastive learning learns by comparing
among similar/dissimilar data samples. Contrastive learning
approaches only need to define the similarity distribution in
order to sample a positive input x+ ∼ p+(·|x), and data dis-
tribution for a negative input x− ∼ p−(·|x), with respect to
an input sample x.

In the self-supervised setting, (i.e. contrastive self-
supervised learning), instead of deriving a pseudo-label from
the pretext task, contrastive learning methods learn a discrim-
inative model on multiple-input pairs, according to some no-
tion of similarity. Methods such as SimCLR provided a ba-
sic framework for contrastive SSL using siamese networks.
Follow-up work MOCO [He et al., 2020] used an out-of-
batch list of negative examples rather than utilizing a large
batch size as in SimCLR to learn from samples. BYOL [Grill
et al., 2020] was the first method not to require negative sam-
ples with a siamese SSL framework.

2.2 Object Detection
Compared to classification, the notion of a negative sample
definition needs careful thought in object detection as images
can contain multiple subjects. For this reason, recent detec-
tion focused methods such as SCRL [Roh et al., 2021] and
MultiSiam [Chen et al., 2021] improve upon BYOL with de-
tection specific modifications as it doesn’t require negative
examples during training.

3 Method

3.1 Contrastive Self Supervised Learning
Contrastive Self-Supervised Learning can be formulated as a
dictionary look-up problem [He et al., 2019], where a given
reference image I is augmented into two views, query and
key. Tthe query token q should match its designated key k+
over a set of sampled negative keys {k−} from other images.
Generally, the framework can be summarized as the following
components: (i) A data augmentation module T constituting
n atomic augmentation operators, such as random cropping,
color jittering, and random flipping. We denote a predefined
atomic augmentation as a random variable Xi. Each time the
atomic augmentation is executed by sampling a specific aug-
mentation parameter from the random variable, i.e., xi∼Xi.
One sampled data augmentation module transforms image I
into a random view Ĩ, denoted as Ĩ = T [x1, x2, . . . , xn](I).
Positive pair (q, k+) is generated by applying two randomly
sampled data augmentations on the same reference image. (ii)
An encoder network f which extracts the feature v of an im-
age I by mapping it into a d-dimensional space Rd. (iii) A
projection head h which further maps extracted representa-
tions into a hyper-spherical (normalized) embedding space.
This space is subsequently used for a specific pretext task,
i.e., contrastive loss objective for a batch of positive/negative
pairs. A common choice is InfoNCE [van den Oord et al.,

2018]:

Lq , − log
exp(q·k+/τ)

exp (q·k+/τ) +
∑
k− exp(q·k−/τ)

, (1)

where τ is a temperature hyper-parameter scaling the distri-
bution of distances.

Bootstrap Your Own Latent
We follow BYOL [Grill et al., 2020] for learning contrastive
representations. The online network is appended with a pro-
jector gθ, and a predictor qθ to obtain latent embeddings.
Both gθ and qθ are two-layer MLPs. The target network is
only appended with the projector gξ to avoid trivial solutions.
The target network provides the regression target to train the
online network while the target network’s parameter set ξ fol-
lows the online network’s parameter set θ, by using an expo-
nential moving average(EMA) with a decay parameter τ , i.e.
, ξ ← τξ + (1− τ)θ.

Lθ,ξ ,
∥∥qθ(zθ)− z′ξ∥∥22 = 2− 2 ·

〈qθ(zθ), z′ξ〉∥∥qθ(zθ)∥∥2 · ∥∥z′ξ∥∥2 · (2)

We symmetrize the loss Lθ,ξ in 2 by separately feeding v′
to the online network and v to the target network to compute
L̃θ,ξ.

After training phase, we only keep the encoder fθ to gen-
erate image features; as in [He et al., 2019].

Data Preprocessing
We use the same set of image augmentations in SimCLR
[Chen et al., 2020] and BYOL [Grill et al., 2020] without
modification, i.e. random crops are resized to 224× 224, fol-
lowed by random horizontal flip, color jitter, Gaussian blur
and solarization. We flip back the projected 2D feature map
before feature alignment if the horizontal flip is applied pre-
viously. All the augmentation parameters are kept the same
with BYOL.

SimCLR established that data augmentations with drastic
color shifts are beneficial for learning invariant representa-
tions. For the autonomous driving scenario we keep the same
procedure.

3.2 Object Detection
For object detection in autonomous driving setting, we
decided to utilize single-shot detection framework Reti-
naNet [Lin et al., 2017b] with feature pyramid network
(FPN) [Lin et al., 2017a] to demonstrate our key design prin-
ciples as it has been a common benchmark for both ROAD
and BDD100K benchmarks as well as recent state-of-the-art
self-supervised methods such as BYOL and SCRL evaluation
using the COCO [Lin et al., 2014] benchmark.

4 Experiments
4.1 Datasets
ImageNet. The default setting for visual representation
learning in a self-supervised manner takes uses the Ima-
geNet [Deng et al., 2009] benchmark as training data. Im-
ageNet contains 1.2M labeled images with 1000 classes.
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Figure 1: Agent detection results on ROAD benchmark. Each method has been tested on all 3 splits in ROAD. Accuracies reported are AP@50
metric and mean of 3 different training runs. 2DRN: Supervised RetinaNet, 3DRN: Supervised 3DRetinaNet; where as MOCO, BYOL,
SCRL are Self-Supervised RetinaNet accuracies.

(a) Supervised (b) MOCO (c) BYOL (d) SCRL

Figure 2: Evaluation of RetinaNet results on trained on Split-3 of ROAD. Plots show precision-recall curves computed from AP50 metric on
the testset. AP50 metric plotted with dark gray. Blue: Localization error; Red: Classification error; Purple: False positives; Orange: False
negatives.

ROAD BDD100K
Self-Supervised Val Test Val
2D RetinaNet [Lin et al., 2017b] 30.77 50.04 53.40
3D RetinaNet† [Singh et al., 2022] 32.33 39.17 -
YOLOv5† [Singh et al., 2022] 57.9 56.9 -

Self-Supervised Val Test Val
MOCOv1 [He et al., 2019] 30.13 54.00 54.42
BYOL [Grill et al., 2020] 34.24 52.03 49.78
SCRL [Roh et al., 2021] 34.92 49.55 51.57

Table 1: Evaluation of RetinaNet object detection using ROAD and
BDD100K datasets. The accuracies reported here are AP50 bound-
ing box metric For ROAD benchmark we report evaluation using the
mean of three splits. For BDD100K we report results on the valida-
tion set. †: Results from citation.

ROAD Benchmark. ROAD benchmark is split into two
sets. 18 videos for trainval and 4 videos for testset
for equally representing four types of weather conditions e.g.
sunny, overcast, snow and night. There are 3 evaluation splits,
each containing the same images for trainval. For each
split, a single type of weather condition is selected for that
validation set, while testset uniformly contains 1 video
from each weather condition. Split-1 is designed to use
an overcast condition in the validation set where the train-
ing set is a balanced mix of weather conditions. Split-2
has all nighttime videos in the validation set, hence the most

challenging for drastic illumination shift setting. Split-3
training set contains all conditions similar to Split-1, while
val-3 includes only sunny condition. There are 10 different
classes of agents for object detection in ROAD e.g. Ped, Car,
Tl, Cyc, Medveh, OthTL, Bus, LarVeh, Mobike, EmVeh. The
dataset contains 22 videos with 122K annotated video frames,
for a total of 560K detection bounding boxes. More details of
can be found in [Singh et al., 2022].

BDD100K. BDD100K, a large-scale driving video
dataset with extensive annotations for heterogeneous tasks.
BDD100K provides 100K images with diverse weather
conditions. For object detection with 10 class annotations
are provided. Images are split into train(70K), val(10K)
and test(20K) sets. Further details can be found in [Yu et
al., 2020]. BDD100K has object detection annotation for
the following classes: Car, Sign, Light, Person, Truck, Bus,
Bike, Rider, Motor, Train.

4.2 Evaluation
Pretraining. All supervised and self-supervised pretraining
before transferring to detection downstream task is trained
on ImageNet benchmark following state-of-the-art methods
BYOL, MOCO and SCRL[Grill et al., 2020; He et al., 2020;
Roh et al., 2021].

Downstream object detection training. After pretraining
we train a RetinaNet detector on the ROAD and BDD100K
object detection task with their respective labels in a super-
vised setting. ROAD benchmarks are evaluated with AP50

metric as per [Singh et al., 2022]. For both BDD100K and



Figure 3: Evaluation of RetinaNet results on trained on Split-3 of ROAD using MOCO. Different bounding box size results are aggregated
in different plots. Small(left), medium(middle), large(right). Plots show precision-recall curves computed from AP50 metric on the testset.
AP50 metric plotted with dark gray. Blue: Localization error; Red: Classification error; Purple: False positives; Orange: False negatives.

ROAD benchmarks we report detailed results using AP met-
ric using COCOAPI[Lin et al., 2014] in Appendix A for com-
pletion and bounding box size results.

4.3 Results
We compare 3 self-supervised methods as well as provide
3 supervised pretraining baselines for comparison. 2 of the
SSL methods, MOCO and BYOL, are only trained for general
representation learning for image classification while SCRL
builds up on BYOL with detection specific data augmenta-
tion and feature and alignment components after the back-
bone with modified Rio loss that increases performance on
COCO benchmark [Roh et al., 2021].

Table 1 summarizes the evaluation accuracies for both su-
pervised and self-supervised methods for agent detection on
ROAD and BDD100K benchmarks for object detection. All
experiments use RetinaNet [Lin et al., 2017b] single-shot de-
tection with Resent [He et al., 2016] convolution neural net-
work as backbone, exception are 3DRetinaNet, YOLOv5 re-
sults from [Singh et al., 2022] for ROAD dataset. Supervised
2D RetinaNet baseline surpassed 3DRetinaNet accuracy as
3DRetinaNet was designed for object detection (agents) as
well as action labels in the ROAD dataset. We refer to [Singh
et al., 2022] for YOLOv5 results to better put our evaluations
in state-of-the-art object detection context.

Results on ROAD benchmark
Between self-supervised methods, MOCO has the best accu-
racy, that is 3.96 percentage points(p.p.) better than super-
vised baseline using AP50 metric, on the testset which
evaluates all weather conditions, while detection-specific
SCRL has the best average score in three validation splits that
evaluates generalization to different weather conditions.

Looking at performance on individual splits, MOCO is the
best across the broad for the testset, while for validation splits,
there is no clear winner. It is noteworthy to report that con-
trastive SSL methods either match or surpass supervised pre-
training in all splits and testset. Figure 1 shows evaluation
results for all splits in detail.

Figure 2 shows detailed plots of Precision-Recall(PR)
curves of different methods, also, it highlights the amount of
inaccuracies for the evaluations such as localization errors,
class confusion, and misdirection’s such as false-negatives
and false-positives. PR-curves follow a similar trend across
all experiments as the detector is a RetinaNet; however,

there are noticeable differences in results as the initial train-
ing weights are from different pretraining methods. MOCO
makes the least amount of localization errors(8p.p.), whereas
it has the largest(12p.p.) class confusion. Supervised and
BYOL has low class confusion(6p.p.−6p.p.) while the local-
ization error is (6p.p.− 7p.p.). We show a similar analysis in
Figure 3 where we look at accuracies of ground truth boxes
categorized by size as it was defined in the COCO bench-
mark. Large bounding boxes have high localization accu-
racy but the most significant class confusion error. The op-
posite is true for Small bounding boxes. Medium bounding
box results fall in between in both respects. This behavior is
observed across all experiments.

Results on BDD100K benchmark
Here we again see MOCO as the best method by 0.78p.p.
above supervised baseline for the object detection task. We
can also notice other SSL pretraining methods perform lower
than the supervised baseline. This points to the superior trans-
fer learning performance of MOCO in both benchmarks and
raises the question importance of negative examples in pre-
training phase for autonomous driving compared to generic
object detection as BYOL and SCRL learn solely from posi-
tive examples.

5 Conclusions and Future work
In this work, we have provided one of the first benchmarks
for contrastive self-Supervised learning, based on new newly
released ROAD benchmark as well as BDD100K for the ob-
ject detection task. Our results show that contrastive SSL
methods can match or outperform supervised pretraining. We
also report that object detection focused SSL methods, such
as SCRL, which outperform generic SSL methods (such as
MOCO or BYOL) on the COCO benchmark do not outper-
form in the autonomous driving setting. For future work, we
have identified areas of weak performance such small-size
object localization and big-size object class confusion. We
believe performance can be further improved using smarter
data augmentations techniques within the contrastive SSL
framework. We leave this for future work.
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A Detailed report of metrics
Here we provide all metric computed by COCOAPI[Lin et
al., 2014] for our experiments for completion. All results re-
ported here are mean of 3 runs of the same experiment. Re-
sults for ROAD benchmark are provided in Table 2, Table 3
and Table 4. Results for BDD100K are provided in Table 5.



Table 2: Detailed results on ROAD, Split-1

Split-1 Val-1 Test
AP AP50 AP75 APSmall APMedium APLarge AP AP50 AP75 APSmall APMedium APLarge

2DRN 23.76 47.15 21.08 3.45 18.59 30.30 23.47 45.81 22.00 5.24 17.23 33.54
MOCO 25.04 46.78 24.81 3.98 21.40 31.16 24.73 48.69 22.63 5.16 18.44 34.48
BYOL 25.98 48.71 25.59 3.01 20.35 33.86 23.93 46.60 22.99 4.56 17.72 33.05
SCRL 27.06 50.86 27.18 3.67 18.66 36.06 20.20 40.98 17.94 3.16 14.67 29.12

Table 3: Detailed results on ROAD, Split-2

Split-2 Val-2 Test
AP AP50 AP75 APSmall APMedium APLarge AP AP50 AP75 APSmall APMedium APLarge

2DRN 5.64 14.21 3.14 0.39 3.17 10.80 30.07 56.33 30.68 4.58 23.38 42.72
MOCO 4.69 11.13 3.23 0.22 2.98 8.41 31.31 57.86 31.33 4.79 23.67 44.70
BYOL 8.66 19.83 6.11 0.38 3.51 16.37 28.91 56.30 26.38 3.42 23.23 40.68
SCRL 7.31 17.79 4.67 0.31 3.67 13.70 27.64 53.63 24.18 3.57 21.10 38.59

Table 4: Detailed results on ROAD, Split-3

Split-3 Val-3 Test
AP AP50 AP75 APSmall APMedium APLarge AP AP50 AP75 APSmall APMedium APLarge

2DRN 14.90 30.63 13.11 1.92 10.25 27.46 24.43 47.98 22.15 2.93 18.47 36.20
MOCO 15.78 32.49 13.35 1.92 10.57 27.64 29.25 55.43 28.77 4.28 24.01 41.26
BYOL 17.61 34.73 16.77 1.86 10.48 31.07 27.44 54.06 23.80 3.30 22.08 39.15
SCRL 19.48 36.10 19.63 1.77 9.50 34.29 28.60 54.02 28.66 3.11 22.86 39.36

Table 5: Detailed results on BDD100K, Validation Split

AP AP50 AP75 APSmall APMedium APLarge

2DRN 28.82 53.40 26.61 11.21 35.28 50.50
MOCO 29.59 54.42 27.63 11.68 36.08 51.69
BYOL 26.33 49.78 24.06 9.83 32.04 47.50
SCRL 27.69 51.57 25.74 10.49 33.38 50.07
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