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Abstract

Street parking sign detection and recognition
are beneficial to autonomous driving and for
current drivers, though it is a more challeng-
ing task than tra�c sign detection due to its
diversity and complexity. In this paper, we
address the problem of limited public street
parking sign data by collecting street parking
signs across cities in United States. We then
study the feasibility of commonly adopted deep
learning methods on two related tasks in the
real-time application scenario. That is, street
parking sign detection from street level images
or videos, and parking sign symbol object de-
tection for precise understanding of each park-
ing sign. We find that YOLO is more appli-
cable in terms of detection performance (i.e.,
96.8% AP@0.5 for parking sign detection and
98.3% mAP@0.5 for symbol detection), detec-
tion speed in real-time (i.e., 163 and 88 frames
per second), and model size (i.e., 14.4MB and
68.4MB) fitting in small devices like smart-
phones or dash cameras.

1 INTRODUCTION
Automatic detection and recognition of street parking
signs are essential not only for autonomous driving in
the future but also for drivers in the present looking for
parking in the middle of complex tra�c systems on a
daily basis. While street parking signs tend to convey
similar messages, their styles are vastly di↵erent across
cities and states in the United States. Furthermore,
some signs can get complicated (e.g., Fig. 1) through
information stacking and distract even the most expe-
rienced drivers, potentially leading to dangerous situa-
tions or tra�c congestion. Tra�c sign detection was an
extensively researched topic in recent decades [Sanyal
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Figure 1: A stack of parking signs1

et al.2020]. Though street parking sign detection and
recognition is a similar task, it is a relatively unexplored
problem. Street parking signs typically include multiple
symbols with various texts as opposed to tra�c signs
that are designed to be fairly simple for quick user inter-
pretation. Moreover, street parking signs are extremely
diverse, making its recognition task more challenging.

To the best of our knowledge, there is no prior work
which intends to cover all the common and meaning-
ful parking symbols, so as to generate a precise inter-
pretation for each street parking sign. For example,
[Jiang2019, Li2020, Li et al.2021] studied the detection
of only no parking symbols and direction arrows. [Faraji
et al.2021], on the other hand, handled the street parking
sign recognition task by assuming that each sign conveys
one single parking rule of either No-Parking, Parking-
Allowed, or No-Stopping. However, this assumption

1https://www.reddit.com/r/CrappyDesign/comments/
bvjz9u/the parking signs in la are next level crap/
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Figure 2: The parking sign interpretation pipeline. This paper evaluates the tasks of Sign Detection and Symbol
Detection.

does not hold when a parking sign contains multiple sym-
bols or is divided into sections (e.g., Fig. 1). Therefore,
to fully understand a parking sign, in this work, we aim
to extract as much information as possible with a scal-
able design for the real-time application.

Specifically, we address the lack of public data for
street parking signs by collecting street parking signs
across cities in the United States. Based on that, we
study the feasibility of precise understanding of each
parking sign in real-time using commonly adopted deep
learning methods, such as RetinaNet [Lin et al.2018],
YOLOv5 [Jocher2021], and Swin Transformer [Liu et
al.2021]. Concretely, we propose a basic framework for
street parking sign understanding as shown in Fig. 2,
which is started by parking sign detection from street
level images or videos. Then, for each detected park-
ing sign, we aim to detect all symbols including texts
painted on street parking signs. We find that for both
street parking sign detection and parking symbol detec-
tion, YOLOv5 [Jocher2021] is more applicable in terms
of detection performance (i.e., 96.8% AP@0.5 for park-
ing sign detection and 98.3% mAP@0.5 for symbol detec-
tion), detection speed in real-time (i.e., 163 frames per
second for parking sign detection and 88 frames per sec-
ond for symbol detection), and model size (i.e., 14.4MB
for parking sign detection model and 68.4MB for sym-
bol detection model) fitting in small devices like smart-
phones or dash cameras.

2 RELATED WORK

2.1 Object Detection

Object detection is one of the most significant branches
in computer vision, solving two key tasks: (1) detect

the presence and location of specific objects in an input
image and (2) recognize the category of objects. Due to
the lack of e↵ective image representation, traditional ob-
ject detection methods [Viola and Jones2001,Dalal and
Triggs2005,Felzenszwalb et al.2010] were built on hand-
crafted features. Since [Krizhevsky et al.2012], deep con-
volutional neural network (CNN) has largely improved
the performance of object detection because of the ca-
pability of learning robust and high-level feature rep-
resentations of an image. Generally, object detection
is grouped into two genres: “two-stage detection” and
“one-stage detection”.

Two-stage detection frameworks divide object detec-
tion into two phases: (1) extract a set of object pro-
posals as the regions of interest, and (2) feed propos-
als into CNNs to predict the presence and the category
of objects. Regions with CNN (R-CNN) [Girshick et
al.2014], as a typical two-stage detection architecture,
employs selective search [Uijlings et al.2013] to gener-
ate up to approximately 2,000 candidate object boxes.
Then each candidate box is resized to a fixed-size image
and fed into a pre-trained CNN model to extract fea-
tures. Finally, linear SVM classifiers are used to predict
the presence of an object within each region and to rec-
ognize object categories. Even though R-CNN achieved
staggering performance at the time, it su↵ered from ex-
tremely slow detection speed (14s per image with GPU)
due to the redundant feature computations on a large
amount of overlapped proposals. Nevertheless, R-CNN
was a breakthrough in object detection and remained
as the heart of many two-stage detectors such as Fast
R-CNN [Girshick2015], Faster R-CNN [Ren et al.2015],
and Feature Pyramid Networks (FPN) [Lin et al.2017].

One-stage detection frameworks, however, introduces



a unified detection design, with a single CNN, to pre-
dict the bounding boxes and calculate the probability
of the categories simultaneously by splitting the input
images into grids as anchors. The most popular one
for this genre is You Look Only Once (YOLO) [Red-
mon et al.2016], followed by Single Shot multi-box De-
tector (SSD) [Liu et al.2016] and RetinaNet [Lin et
al.2018]. YOLO was the fastest architecture at the time
by trading-o↵ between the speed and accuracy, with
which the standard version achieved 45 FPS, and the
fastest version achieved 150 FPS. In 2020, YOLOv4
[Bochkovskiy et al.2020] was proposed to improve the
accuracy by employing Mosaic data augmentation.

Besides the aforementioned genres, Trans-
former [Vaswani et al.2017] has gained lots of popularity
due to its impressive performance. The architecture is
based on self-attention mechanism, which learns the
relationships between elements in a sequence, and thus
is able to generalize long-range relationships. This
perk is valuable since most state-of-the-art techniques
incorporate CNN, which by design has localization
inductive bias. However, the computational complexity
for this mechanism is quadratic, and an image contains
significantly more information than a sentence. Thus,
Transformers still struggled to reach real-time detection
speed. In this work, we study the feasibility of one
state-of-the-art Transformer on real-time street parking
sign understanding.

2.2 Parking Sign Understanding

The problem of tra�c sign detection is of more popular
interest in autonomous driving and only a few works
have been done on the subject of street parking sign
understanding as follows.

[Mirsharif et al.2017] proposed a Linear SVM based
framework to detect on-street parking signs. They made
use of Google Street View API to collect street-level im-
ages in San Francisco. [Irshad et al.2018] adopted the
same method to collect parking sign data but on a larger
scale. They recognized the ine�ciency of parsing Google
Street View images for parking signs and developed an
active learning method to solve this drawback. How-
ever, they only studied parking sign detection. [Faraji et
al.2021] took a slightly di↵erent approach for street park-
ing sign understanding. Instead of going through two
phases of sign detection and then interpretation or recog-
nition, the pipeline was combined into one single step by
assuming each sign conveys one parking rule and there
are only three classes of signs: no-stopping, no-parking,
and parking-allowed. They used YOLOv4 [Bochkovskiy
et al.2020] for street parking signs in Vancouver, Canada.
The authors acknowledged the lack of text interpretation
and their assumption is too strong. More than often, we
encounter parking signs that contain more than one sym-
bol or are divided into multiple sections, or both, which
cannot be handled by their work.

[Jiang2019, Li2020, Li et al.2021] presented a frame-
work for on-street parking sign detection and under-
standing in the perspective of mobile application devel-

opment, where users expect parking rules from snapshots
of parking signs taken from their phones. For parking
sign recognition, they suggested that RetinaNet [Lin et
al.2018] would yield the best performance in terms of ac-
curacy and speed for this task. To understand the con-
text of each parking sign, text locations are recognized by
a convolutional recurrent neural network (CRNN) before
being fed into a parking rule generation algorithm. They
treated the detection of important objects on a sign as a
binary classification task and used SqueezeNet [Iandola
et al.2016] as the model for no parking and arrow symbol
detection. This means each new type of symbol would re-
quire collecting data, labeling, and training a new model
- the process which demands a substantial amount of
manual work. Moreover, increasing the number of mod-
els in the pipeline involves more storage and processing
time. Therefore, in this work, we aim to use only one
model to cover all common and meaningful parking sign
symbols for precise and e�cient understanding.

3 Methodology

3.1 Building Street Parking Sign Dataset

To the best of our knowledge, there is no open-source
annotated dataset for both street parking sign detec-
tion and parking symbol detection. Thus, we manu-
ally collected and annotated two sub-datasets, cover-
ing di↵erent cities in the United State. For the anno-
tation software, we used Computer Vision Annotation
Tool (CVAT) [Sekachev et al.2020].

Parking Sign Detection Data

The parking sign dataset contains 4,191 parking sign
images, of which 2,097 are street-level images taken by
hand, while the rest of them are street-level video frames
from dash cameras. These videos cover four di↵erent
cities: Tacoma, Boulder, Connecticut, and New York.
Each image/frame is annotated with one or more bound-
ing boxes for each parking sign inside. That means, for
stacking parking signs, we annotated each parking sign
in an independent bounding box. We collected parking
signs with diverse shapes (e.g., Fig. 3) and diverse types
(e.g., Fig. 4). We also involved variations of the parking
signs under various situations, for example, light condi-
tions (e.g., Fig. 5), shooting angle (e.g., Fig. 6), etc. We
split our dataset into three splits: training, validation,
and test, with ratio 81 : 9 : 10, respectively.

Figure 3: Parking signs with diverse shapes: circle, ver-
tical, horizontal.



Figure 4: Parking signs with diverse types: loading
only, truck only, taxicab, payment required, handicap
reserved.

Figure 5: Parking signs under di↵erent light conditions.

Figure 6: Parking signs with di↵erent shooting angle.

Parking Sign Symbol Detection Data

Our symbol detection data consists of 3,369 street park-
ing sign images from diverse cities around the United
States such as San Francisco, New York, Chicago, Seat-
tle, etc. We cropped the parking signs from the raw
images/frames by our parking sign detection model and
then annotated the symbols on them. Images are either
taken directly from mobile devices, downloaded from
public internet archives or extracted from our dash-cam
videos, so their qualities are varied.

From the collected data, we figured out 27 types of
symbols that are useful for interpreting and understand-
ing the parking rules, most notably: text, no-parking
symbol, parking-allowed symbol, handicap symbol, tow-
away symbol, and arrows. Arrows are divided into five
classes, each indicating a di↵erent arrow direction: up,
down, left, right, and bidirectional. There are a total of
28,142 labels (86.43% are texts) across all images in our
collected parking symbol dataset. We divided the data
with a 72 : 8 : 20 label ratio for train, validation and test.
Labels and data are preferentially placed in the training
set if there are not enough samples, such as taxi symbol
and permit with documentation-like symbol. Refer to
Fig. 7 for the detailed distribution of classes.

We also created an extra test dataset, comprising 821
images extracted from our dash-cam videos recorded in
the city of Boulder Nevada, and the state of Connecti-
cut. Both locations are not presented in the training
data, and we refer to this dataset as the “Boulder-CT”

Figure 7: Distribution of all classes in parking symbol
dataset.

set. Similar to other samples obtained from dash-cam
videos, the parking sign image resolutions are extremely
low because the size of parking signs is considerately
small compared to the whole size of frames. The notable
characteristic of the Boulder-CT set is that it contains
multiple instances of the rounded sign with a down ar-
row (e.g., Fig. 8 - left). It also includes extremely small
handicap symbols (e.g., Fig. 8 - right), though its type
and placement on the sign are not unique.

Figure 8: Examples in the Boulder-CT set. Their image
resolutions are 168⇥189, 83⇥144, and 74⇥65, respec-
tively.

3.2 Parking Sign Understanding Pipeline

To precisely understand each parking sign, we use the
parking sign understanding pipeline proposed in our pre-
vious works [Jiang2019, Li2020, Li et al.2021], which is
summarized in Fig. 2. Concretely, the input is a street-
level image taken by the user’s phone or extracted from
a video, which may contain one or more parking signs.



This image is then passed through the street parking
sign detection model where the sections are located and
cropped out, where each section contains only one sign
with the minimal background. Each cropped sign is af-
terwards fed to our symbol detection model to classify
all relevant objects on the sign, and the results are even-
tually passed through the text and symbol interpreter to
generate the final parking rules.

In this study, we focus on the first two tasks, that is,
parking sign detection from street level images/frames
and parking symbol detection in each cropped park-
ing sign. We aim to evaluate the feasibility of com-
monly adopted object detection models (i.e., RetinaNet
[Lin et al.2018], YOLOv5 [Jocher2021], and Swin Trans-
former [Liu et al.2021]) in real-time that is crucial for
autonomous driving and current drivers. It should be
noted that all two-stage detection models are excluded
considering the real-time requirement. In the following,
we briefly describe each model included in the evalua-
tion.

RetinaNet [Lin et al.2018] marked the first time
a one-stage method surpassed the accuracy of two-
stage ones while still retaining the benefit of fast de-
tection. The authors proposed Focal Loss which shifts
the model’s attention to hard misclassified samples and
achieves better accuracy for dense object detection tasks.
RetinaNet was proven to perform well for the sign de-
tection task in our previous works [Jiang2019,Li2020,Li
et al.2021].

YOLO was introduced in [Redmon et al.2016] as a
Unified Detection, where it overlays a grid of size S ⇥ S

on top of the input image. Each cell in this grid is re-
sponsible for predicting two parameters: 1) B number
of bounding boxes and confidence scores for these boxes
and 2) the C class probabilities.

The confidence score reflects how confident the model
thinks a cell is containing an object, regardless of its
class. It is calculated by the product P (Object) ⇤
IOUtruth

pred where P (Object) is either 0 or 1 indicating

the presence of the object and IOUtruth
pred is the intersec-

tion over union value between the predicted box and
the ground truth. Besides that, each bounding box pre-
diction also consists of 4 other values: x, y, w, h. The
coordinates (x, y) is the center point of the bounding
box relative to the bounds of each grid cells, while the
width-height pair (w, h) is relative to the whole image.

Each class probability among C predictions, denoted
P (Classi|Object), is conditioned on the grid cell contain-
ing an object. This probability is determined only once
for every grid cell, regardless of the number of B bound-
ing boxes it is predicting, so all boxes in the same grid
will share the same predicted class. Finally, YOLO uses
Non-Maximum Suppression (NMS) to filter o↵ bound-
ing boxes that do not contain any valid objects and keep
only the strongest predictions if two or more boxes over-
lap over a certain IOU threshold. To arrive at the class
confidence score for each bounding box, the class prob-
ability is multiplied with the bounding box confidence

score as

P (Classi|Object) ⇤ P (Object) ⇤ IOU
truth
pred

The first version of YOLO was able to provide good
performance while achieving 155 frames per second
(FPS). Over the next five years, incremental improve-
ments were made and YOLOv5 [Jocher2021] is the latest
adaptation. YOLOv5 incorporates cross-stage partial
network (CSPNet) [Wang et al.2020]. CSPNet solves
the problem of duplicate gradient information, e↵ec-
tively reducing the number of model parameters and
computational bottleneck, resulting in smaller model
size, faster training and converging, and better inference
speed. This is important for our purpose of embedding
a real-time street parking sign interpreting system into
mobile devices or autonomous driving cars. Secondly,
as part of YOLOv5’s neck, path aggregation network
(PANet) [Wang et al.2019], which is an advanced version
of FPN, is used to boost the propagation of low-level fea-
tures, increasing the localization accuracy of prediction
bounding boxes. Finally, YOLOv5 utilizes the detection
head mechanism of YOLOv3 [Redmon and Farhadi2018]
which predicts bounding boxes at 3 di↵erent scales of fea-
ture maps to achieve multi-scale prediction, allowing the
model to identify small, medium, or large objects. These
perks give YOLOv5 the ability to accurately recognize
small objects in cases of texts or low resolution images
from video feeds.

Swin Transformer [Liu et al.2021] is a variant of
Vision Transformer (ViT) [Dosovitskiy et al.2020]. ViT
achieved a top performance on some computer vision
tasks, but with the problem of quadratic computational
complexity. Swin Transformer constructs a hierarchi-
cal representation of the image by starting with small
patches and gradually merging them in the process of
feature extraction. To ensure the global self-attention,
it also implements a shifting window approach. Swin is
able to bring the train and test complexity to almost
linear while still producing strong detection results.

4 Experiments

We trained and evaluated our models on a Lambda ma-
chine with Intel(R) Core(TM) i9-9820X @ 3.30GHz 20-
core CPU, 32GB of RAM, and an GeForce RTX 2080
graphics card with 10 GB memory.

4.1 Setup

YOLOv5 [Jocher2021] provides various kinds of archi-
tectures with a trade-o↵ between speed, model size, and
accuracy, that is YOLOv5s, YOLOv5m, and YOLOv5l.
We evaluated the performance of di↵erent architectures.
During the training, we used Adam optimizer for park-
ing sign detection and stochastic gradient descent (SGD)
for parking symbol detection. We set initial learning rate
to 0.001 for parking sign detection and 0.01 for parking
symbol detection, momentum to 0.95 for parking sign de-
tection and 0.937 for parking symbol detection, weight



decay of 0.0005 for parking symbol detection, the in-
put image size to 640x640, and the batch size of 16. We
trained our parking sign detection model over 200 epochs
and parking symbol detection model over 250 epochs.

For Swin Transformer [Liu et al.2021], we adopted it
only for the harder parking symbol detection task and
used the Swin-T (i.e., tiny version) backbone and Cas-
cade Mask R-CNN [Cai and Vasconcelos2017] as the de-
tection method without mask heads, since instance seg-
mentation is not involved in our task. Weights are ini-
tialized with the pre-trained model from [Liu et al.2021].
We also adopted the similar training settings: multi-
scale training of resizing the input that the shorter side
is between 480 and 800, while the longer side is at most
1333. We adopts Adam optimizer with weight decay of
0.05.

Additionally, for parking symbol detection, we aug-
mented our data to avoid overfitting by adjusting
brightness and saturation for both YOLOv5 and Swin.
For YOLOv5, we also used perspective manipulation
and random copy-paste data augmentation [Ghiasi et
al.2021]. During our experiments, we observed that ran-
dom horizontal flip augmentation worsened the perfor-
mance of both models, specifically for only two classes
arrow-left and arrow-right, because of the fact that they
are the mirror-image of each other. Therefore, ran-
dom horizontal flip augmentation were removed from our
training pipeline.

4.2 Evaluation Metric

We employed mean Average Precision(mAP) to evaluate
the performance of our object detection models. For an
object, if there is no predicted bounding box overlapping
with the ground truth bounding box, it is called False
Negative(FN). If there is an overlapping predicted box,
we calculate IoU as

IoU =
Area of Overlap(\)
Area of Union([) . (1)

If IoU value is greater than a pre-defined threshold, it is
classified as True Positive(TP), and False Positive(FP)
otherwise. Precision metric measures among all the pre-
dictions considering how many are predicted correctly
(Precision = TP

TP+FP ). Recall metric measures among
all the objects considering how many are predicted as
positive (Recall = TP

TP+FN ). The precision-recall(PR)
curve is a plot of precision as a function of recall, which
shows the trade-o↵ between these two metrics for vary-
ing IoU threshold values. AP@↵ is the area under the
precision-recall curve(AUC-PR). AP is defined mathe-
matically as,

AP@↵ =

Z 1

0
p(r)dr (2)

Notice, AP@↵ means Average Precision(AP) as the IoU
threshold of ↵. Therefore, AP@0.50 and AP@0.75 mean
AP at IoU threshold of 50% and 75% respectively. A
high AUC-PR implies high precision and high recall.
With more than one classes for the objects, the aver-
age AP (i.e., mAP) over all classes is used.

4.3 Evaluation

Considering the real-time application requirements, we
evaluate these models with the following metrics: mean
average precision (mAP) at the intersection over union
(IoU) threshold of 0.5 and 0.5-0.95 with the stride 0.05,
recall, inference speed, and model size. The most sig-
nificant practical constraint is inference speed and we
consider the requirement is at least 30 FPS.

Parking Sign Detection

For parking sign detection, we first evaluated the per-
formance of di↵erent architectures of YOLOv5 on our
parking sign detection data. As shown in Table 1, their
performance on AP0.5 were quite close. However, for
the model size and inference speed, YOLOv5l held 6.5
times larger model size and 2.5 times slower detection
time compared to the YOLOv5s. Therefore, we used
YOLOv5s as the beginning weights to train the parking
sign detection model.

Table 1: Performance comparison of parking sign detec-
tion on di↵erent YOLOv5 architectures.

Model AP@0.5 Speed Model Size

YOLOv5s 0.831 5.4ms 14.4MB
YOLOv5m 0.853 9.7ms 42.4MB
YOLOv5l 0.858 13.7ms 93.7MB

We eventually obtained a model of size 14.4MB with
an inference speed of 163 FPS and an AP@.5 of 0.968.
Compared to the RetinaNet [Lin et al.2018], YOLOv5s
had a 9% increase on AP@.5 with only 5% of model
size as shown in Table 2. Moreover, RetinaNet can only
predict 5 frames per second, while it is 163 FPS for
YOLOv5s. We also illustrate some exemplar detection
results on complex parking sign images (e.g., Fig. 9) and
frames of a street view video (e.g., Fig. 10), which further
demonstrates the feasibility of YOLOv5s for street park-
ing sign detection in real-time with our training data.

Table 2: Performance comparison of parking sign detec-
tion.

Model AP@0.5 Speed Model Size

RetinaNet 0.886 4.9FPS 290MB
YOLOv5s 0.968 163FPS 14.4MB

Parking Symbol Detection

For parking symbol detection, we carried out two evalu-
ation experiments. First, we used the train split to train
the models and evaluated their performance on test sam-
ples from the same pool of locations. Secondly, we used
the Boulder-CT set to assess the trained models on signs
in a brand new location.

The detection performance on the test split is shown
in Table 3. It should be noted that considering the
symbol detection a harder task than sign detection, we
adopted YOLOv5m and YOLOv5l in this task. We can
observe that Swin Transformer generated better results



Table 3: Performance comparison of street parking symbol detection.

Model Recall mAP0.5 mAP.5:.95 FPS Size(MB)

YOLOv5m 0.980 0.983 0.859 88.5 68.4

YOLOv5l 0.976 0.992 0.892 56.8 147.0
Swin-T 0.997 0.996 0.894 5.0 293.0

Figure 9: Sign detection on complicated street view.

Figure 10: Sign Detection on street-level video frame
from dash-cam.

than YOLOv5 in both precision and recall, but its de-
tection speed is nowhere close to the real-time require-
ment. The performance of YOLOv5m is approximately
comparable to YOLOv5l while o↵ering half the model
size and the extra 30 FPS for inference speed. There-
fore, YOLOv5m is suitable for real-time parking symbol
detection in small devices. Fig. 11 demonstrates some
detection results from YOLOv5m for various types of
symbols, which further confirms its feasibility. While
Swin Transformer model did not meet the practical re-
quirement for real-time applications, its competitive de-
tection mAP is beneficial for future labeling of new data,
which is a decently labor-intensive task.

Then, we investigate the generalization ability of the
model to inference new types or poor quality symbols
that are common for signs extracted from video feeds,
by Boulder-CT test set, which is summarized in Table 4.
It can be observed that when a new and low-quality data
from other cities was introduced, our model performance
decreased as expected. However, the performance is still
acceptable, which demonstrates the generalization abil-
ity of parking symbol detection using our training data.

Figure 11: Symbol detection by YOLOv5m for diverse
categories of symbols.

Table 4: Performance of street parking symbol detection
on Boulder-CT dataset.

Model Recall AP@0.5 AP@0.5:0.95

YOLOv5m 0.746 0.804 0.669

YOLOv5l 0.747 0.805 0.616
Swin-T 0.784 0.775 0.580

Finally, besides the overall performance, we examined
the detection performance for each di↵erent classes as
shown in Table 5. Note that any class not included was
not involved in Boulder-CT data and the ‘Counts’ shows
the number of appearances for each class. While the per-
formance of most classes is acceptable for both models,
they struggled to identify new variants in handicap and
arrow down classes. It is because that even though these
symbols and the symbols in the training data have a few
characteristics in common, they are of di↵erent shapes
and outlooks in general. Therefore, for brand new types
of symbols, even for existing classes, we need to gradu-
ally increase the coverage of the training data.



Table 5: Performance per class on Boulder-CT dataset.

Class Counts
Recall AP0.5

YOLOv5m Swin-T YOLOv5m Swin-T

no parking 92 0.957 0.967 0.963 0.961
text 5303 0.880 0.904 0.923 0.853
handicap 100 0.469 0.690 0.727 0.690

tow away 45 0.933 1.000 0.966 0.997
arrow right 181 0.950 0.978 0.956 0.975
arrow left 167 0.891 0.881 0.912 0.872
arrow bidir 100 0.861 0.850 0.950 0.848
arrow down 117 0.034 0.000 0.041 0.000

5 Conclusion
Street parking sign understanding is an important task
for both autonomous driving and current drivers. How-
ever, this task is relatively unexplored and there is no
public annotated data. In this work, we introduced a
street parking sign dataset that includes 4,191 street-
level images with annotated parking signs and 3,369
cropped parking signs with annotated symbols. Utilizing
this data, we applied our street parking sign understand-
ing pipeline, focused on the evaluation of parking sign de-
tection and symbol detection using commonly adopted
object detection models, and evaluated their feasibility
in the real-time application scenario.

We find that for the parking sign detection, YOLOv5s
can provide a model with AP@.5 of 96.8% and a process-
ing speed of 163 FPS. Moreover, the size of sign detection
model is only 14.4MB, making it lightweight to deploy in
mobile devices or self-driving automobiles. For the park-
ing symbol detection, we find that YOLOv5m is able to
produce a lightweight (i.e., 68.4MB) and fast model (i.e.,
88 FPS), while still achieving 98.3% mAP@0.5. This
demonstrates the feasibility of YOLOv5 using our train-
ing data for the task of real-time street parking sign
understanding. Moreover, we investigated the gener-
alization ability of the trained parking symbol detec-
tion model on a brand new test data collected from
other cities compared to the training data. The accept-
able performance also demonstrates the applicability of
YOLOv5 trained using our data.

However, we also find that even for existing symbol
classes in the training data, it is hard to recognize sym-
bols of totally di↵erent styles (e.g., di↵erent shapes).
Therefore, we need to gradually enlarge the training
data. Besides, for the sign detection model, given street-
level dash-cam videos, the model sometimes fails to de-
tect one parking sign in every present frame. One po-
tential solution is to gather additional information from
continuous frames to improve the parking sign detection.
Ultimately, we will evaluate the performance of text de-
tection and recognition more extensively in future work,
since text is vital for understanding the parking signs.
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