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Abstract

Racing demands each vehicle to drive at its physical lim-
its, when any safety infraction could lead to catastrophic
failure. In this work, we study the problem of safe rein-
forcement learning (RL) for autonomous racing, using the
vehicle’s ego-camera view and speed as input. Given the
nature of the task, autonomous agents need to be able to
1) identify and avoid unsafe scenarios under the complex
vehicle dynamics, and 2) make sub-second decision in a
fast-changing environment. To satisfy these criteria, we pro-
pose to incorporate Hamilton-Jacobi (HJ) reachability the-
ory, a safety verification method for general non-linear sys-
tems, into the constrained Markov decision process (CMDP)
framework. HJ reachability not only provides a control-
theoretic approach to learn about safety, but also enables
low-latency safety verification. Though HJ reachability is
traditionally not scalable to high-dimensional systems, we
demonstrate that with neural approximation, the HJ safety
value can be learned directly on vision context—the highest-
dimensional problem studied via the method, to-date. We
evaluate our method on several benchmark tasks, includ-
ing Safety Gym and Learn-to—-Race (L2R), a recently-
released high-fidelity autonomous racing environment. Qur
approach has significantly fewer constraint violations in
comparison to other constrained RL baselines in Safety
Gym, and achieves the new state-of-the-art results on the
L2R benchmark task. We release our code in the supplemen-
tary material and provide additional visualization of agent
behavior at the following anonymized paper website.

1. Introduction

Racing requires each vehicle to make sub-second decision
in a fast changing environment and operate at its physical
limits [38], when any safety infraction could lead to catas-
trophic failure. Thus, autonomous racing is a particularly
challenging proving ground for autonomous agents to opti-
mize performance, while adhering to safety constraints. In
the reinforcement learning (RL) literature, it is common to
define safety as satisfying safety specifications [4 1] under

the constrained Markov decision process (CMDP) frame-
work [3], which extends the Markov decision process (MDP)
by incorporating constraints on expected cumulative costs.

Due to the low sensor cost and high information content,
camera-based perception is gaining increasing popularity in
autonomous vehicles [45]. While end-to-end autonomous
driving on visual input is an extensively-researched topic for
urban driving, largely thanks to the release of the CARLA
simulator [20], it is less so for high-speed racing, which
may be partly attributed to the lack of open-source, high-
fidelity simulation environments. The recent release of
Learn—-to-Race (L2R) [30] changes that and lowers the
barrier of entry for autonomous racing research.

In this work, we study the problem of constrained RL for
autonomous racing, using the vehicle’s ego-camera view and
speed as input. Due to the nature of the task, the autonomous
agent needs to be able to 1) identify and avoid unsafe scenar-
ios and 2) make fast safety verification given the perception
data. In Figure 1a, we show examples of ego-camera views
and the corresponding safety value Qs (x, u), estimated by
our proposed safety critic, and the distance to road boundary
I(x). While it is straightforward to determine whether a state
is safe based on the vehicle pose, which is illustrated for
reference, the distinction from ego-camera views is much
more subtle. Also evident from the examples is that safety
does not necessarily corresponds to distance to road bound-
ary. Regarding the requirement for fast decision-making, in
our experiments, L2R operates under the setting where the
simulator executes the agent’s command upon receiving it,
and does not wait for the agent to complete its computation.
Thus, high latency can adversely impact agent performance,
where, as discussed in prior art [45], perception stacks in au-
tonomous race-cars account for nearly 60% of total latency.

Given these considerations, we propose to incorporate
Hamilton-Jacobi (HJ) reachability theory, a safety verifica-
tion method for general non-linear systems, into the CMDP
framework. HIJ reachability not only provides a control-
theoretical approach to learn about safety, but also enables
low-latency safety verification. As a reachable set takes into
consideration all possible trajectories over a specified time
horizon, safety verification via HJ reachability only requires
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Figure 1. SAGE Overview. (a) The safety critic, g, verifies the safety of a state-action pair by checking if Qs(z, u) > €. Some examples
of safe vs. unsafe states are provided, using safety margin ¢ = 3, u = 0, and speed = 10m/s. (While vehicle pose is NOT available to the
safety critic, we illustrate them here for reference.) (b) SAGE consists of two policies, which are in charge of safety and performance,
independently. The safety controller intervenes when the current state-action pair is deemed unsafe by the safety critic.

evaluating the safety value of the current state. Furthermore,
safety verification under HJ Reachability theory does not
depend on the performance policy. Thus, we can bypass the
challenges involved with solving a constrained optimization
problem with a neural policy, and decompose the problem of
learning under safety constraints into (a) optimizing for per-
formance, and (b) updating the safety value function. Given
this intuition, we learn two policies that independently man-
age safety and performance (Figure 1b): the performance
policy focuses exclusively on optimizing performance, while
the safety critic verifies if the current state is safe and in-
tervenes when necessary. We refer to our approach as Safe
Autonomous racinG on Ego-vision (SAGE).

Aside from our proposed method, our key contributions
are as follows. Due to the scalability issue [5], existing
works on HJ reachability exclusively study problems de-
fined on physical states, e.g., vehicle pose, instead of high-
dimensional sensory inputs, such as RGB images. We
demonstrate that the HJ safety value function can be learned
directly on visual context via neural approximation, the
highest-dimensional problem studied by HJ safety analysis
to-date, thereby expanding the applications of HJ reacha-
bility to high-dimensional systems where dynamics models
may not be available.

Secondly, we compare the HJ Bellman update rule [23]
to alternatives for learning a safety critic [7,44] on two
classical control benchmarks, where safe states are known,
analytically. Given the same off-policy samples, the HJ
Bellman update rule is more accurate and sample efficient.

Finally, we evaluate our methods on Safety Gym [4]1]
and Learn-to-Race (L2R) [30], a recently-released,
high-fidelity autonomous racing environment, which chal-
lenges the agent to make safety-critical decisions in a com-
plex and fast-changing environment. While SAGE is by no
means free from failure, it has significantly fewer constraint

Unsafe here refers to Qs(z,u) < e

violations compared to other constrained RL baselines in
Safety Gym. We also report new state-of-the-art results
on the L2R benchmark task, and show that incorporating
a learnable safety critic grounded in control theory boosts
performance especially during the initial learning phase.

2. Related Work

Autonomous racing. One approach for autonomous racing
is via model predictive control [32,38,42], which solves an
optimization problem with a model of the system dynam-
ics. Aside from the challenges in modeling the complex
dynamics, a significant drawback of such approach is the
dependence on extensive sensor installation for localization
and state estimation [9]. Another approach is to use a modu-
lar pipeline [32,45], starting from perception on raw sensory
inputs, to localization and object-detection, and finally to
planning and control. While this approach is most commonly
used in practice, disadvantages of the approach include over-
complexity and error propagation [25, 50]. Recently, there
is a lot of interest in using RL-based approaches for au-
tonomous racing. In [14,24], RL agents were trained using
low-dimensional features as inputs. In [10,21], intermediate
features were extracted from perception pipelines to deter-
mine control actions. In [9,48], RL agents were trained end-
to-end on visual inputs by imitating expert demonstration;
in [9], a data-driven model of the environment was further
utilized to train the agent by unrolling future trajectories.

In comparison to racing, there is significantly more liter-
ature on end-to-end autonomous driving for urban scenar-
ios [11,17,18,39,40,51,51,52]. It is beyond our scope
to cover this large research field, and we refer interested
readers to survey papers, such as [28, 50], for more infor-
mation. While we focus on high-speed racing its unique
challenges, we believe the discussion here for safety analysis
on ego-vision is also relevant to urban driving.
Constrained reinforcement learning. There is growing in-



terest in enforcing some notion of safety in RL algorithms,
e.g., satisfying safety constraints, avoiding worst-case out-
comes, or being robust to environmental stochasticity [26].
We focus on the notion of safety as satisfying constraints.
CMDRP [3] is a widely-used framework for studying RL
under constraints, where the agent maximizes cumulative
rewards, subject to limits on cumulative costs characterizing
constraint violations. Solving a CMDP problem is chal-
lenging, because the policy needs to be optimized over the
set of feasible states; this requires off-policy evaluation of
the constraint functions, to determine whether a policy is
feasible [2]. As aresult, safety grows with experience, but re-
quires diverse state-action pairs, including unsafe ones [44].
Furthermore, one needs to solve a constrained optimization
problem with a non-convex neural policy. This may be im-
plemented with techniques inspired by convex optimization,
such as primal-dual updates [7] and projection [49], or by
upper bounding the expected cost at each policy iteration [2].
Most relevant to our work is [7, 44, 46], which also uses
a safety critic to verify if a state is safe; we compare our
control-theoretic learning rule with theirs in Section 5.1.

Guaranteed safe control. Guaranteeing the safety of gen-
eral continuous nonlinear systems is challenging, but there
are several approaches that have been successful. These
methods typically rely on knowledge of the environment
dynamics. Control barrier functions (CBFs) provide a mea-
sure of safety with gradients that inform the acceptable safe
actions [4]. For specific forms of dynamics, e.g., control-
affine [13], and unlimited actuation bounds, this approach
can be scalable to higher-dimensional systems and can be
paired with an efficient online quadratic program for com-
puting the instantaneous control [ 3]. Unfortunately, finding
a valid control barrier function for a general system is a non-
trivial task. Lyapunov-based methods [15, 16] suffer from
the same limitation of requiring hand-crafted functions.

HIJ reachability is a technique that uses continuous-time
dynamic programming to directly compute a value function
that captures the optimal safe control for a general nonlin-
ear system [5,22]. This method can provide hard safety
guarantees for systems, subject to bounded uncertainties and
disturbances. There are two major drawbacks to HJ reacha-
bility. The first is that the technique suffers from the curse
of dimensionality and scales exponentially with number of
states in the system. Because of this, the technique can only
be used directly on systems of up to 4-5 dimensions [5].
When using specific dynamics formulations and/or restricted
controllers, this upper limit can be extended [12, 36]. Sec-
ond, because of this computational cost, the value function
is typically computed offline based on assumed system dy-
namics and bounds on uncertainties. This can lead the safety
analysis to be invalid or overly conservative.

There are many attempts in injecting some form of control
theory into RL algorithms. In comparison to works that

assume specific problem structure [ 13, 19] or existence of a
nominal model [6, 13], our proposed approach is applicable
to general nonlinear systems and does not require a model.
But, we do assume access to a distance metric defined on the
state space. Our primary inspiration is recent work by [23]
that connects HJ reachability with RL and introduces a HJ
Bellman update, which can be applied to deep Q-learning for
safety analysis. This method loses hard safety guarantees due
to the neural approximation, but enables scalable learning
of safety value function. However, an agent trained using
the method in [23] will focus exclusively on safety. Thus,
we extend the method by formulating it within the CMDP
framework, thereby enabling performance-driven learning.

3. Preliminaries

Constrained MDPs. The problem of RL with safety con-
straints is often formulated as a CMDP. On top of the MDP
tuple (X,U, R, F), where X is the state space, U is the
action space, F : X x U — X characterizes the system dy-
namics, and R : X x U — R is the reward function, CMDP
includes an additional set of cost functions, {C1, ...,Cy,},
where each C; : X x U — R maps state-action transitions
to costs characterizing constraint violations.

The objective of RL is to find a policy = : X —
P(U) that maximizes the expected cumulative rewards,
VE(@) = Bapunmr [Doneo VW R(zk, wi)|zo = z], where
v € [0,1) is a temporal discount factor. Similarly,
the expected cumulative costs are defined as V7 (z) =
Eapunmr [Doneo V" Ci(@r, ug)|zo = x]; CMDP requires
the policy to be feasible by imposing a limit for the costs,
ie., Vo, (m) < xy, Vi. Putting everything together, the RL
problem in a CMDP is:

n* =argmax Vg(z) st VZ(z)<x; Vi. (1)

HJ Reachability. To generate the safety constraint, one can
apply HJ reachability to a general nonlinear system model,
denoted as & = f(z,u). Here x € R"™ is the state, u is
the control contained within a compact set /. f is assumed
uniformly continuous and bounded, and Lipschitz in x for all
u. For discrete-time approximations, the time step At > 0
is used. We denote all allowable states as /C, for which there
exists a terminal reward [(z), such that z € K < I(z) >
0. An [(x) that satisfies this condition is the signed distance
to the boundary of K. Taking autonomous driving as an
example, K is the drivable area and [(x) is the distance to
road boundary or obstacle. This set K is the complement
of the failure set that must be avoided. The goal of this HJ
reachability problem is to compute a safety value function
that maps a state to its safety value, with respect to [(x),
over time. This is done by capturing the minimum reward
achieved over time by the system applying an optimal control



policy:

Vs(z,T) = sup min (& (1)),
u(-) tE[0,T] ’

2

where £ is the state trajectory, T < 0 is the initial time,
and 0 is the final time. To solve for this safety value func-
tion, a form of continuous dynamic programming is applied
backwards in time, from ¢ = 0 to ¢ = 7', using the Hamilton-
Jacobi-Isaacs Variational Inequality (HJI-VI):

7vs

. { v
min

5 (.0, Vsl 1) — V(o))

Vs(a,0) =l(x). (3)

The super-zero level set of this function is called the reach-
able tube, and describes all states from which the system can
remain outside of the failure set for the time horizon. For
the infinite-time, if the limit exists, we define the converged
value function as Vs(x) = limp_, o, Vs(z,T'). While the
HIJI-VI is difficult to solve, once solved, safety verification
only requires evaluating the safety value of the current state.

Once the safety value function is computed, the optimal
safe control can be found online by solving the Hamiltonian:
m5(x) = argmax,ey (f(z, u), VVs(x)). This safe control
is typically applied in a least-restrictive way, wherein the
safety controller becomes active only when the system ap-
proaches the boundary of the reachable tube, i.e., u ~ 7 if
Vs(z,T) > 0 and 7§ otherwise.

The newly introduced discounted safety Bellman equa-
tion [23] modifies the HJI-VI in (3) in a time-discounted
formulation for discrete time:

VS (:L‘)

(1—=y)l(x)+y min {l(m), max Vs(z + f(x, u)At)}
VS(*T70) = l(l‘) “4)

This formulation induces a contraction mapping, which en-
ables convergence of the value function when applied to
dynamic programming schemes, commonly used in RL.

4. Safe Autonomous racinG on Ego-vision

In this section, we describe our framework for safety-
aware autonomous racing. We are inspired by guaranteed-
safe methods, such as HJ reachability, which provides a
systematic way to verify safety. Thus, we formulate our
problem as a combination of constrained RL and HJ reacha-
bility theory, adopting a control-theoretic approach to learn
safety. Building upon prior work on neural approximation of
HJ Reachability [23], we demonstrate that it is possible to di-
rectly update the safety value function on high-dimensional
sensory input, thereby expanding the scope of applications to
problems previously inaccessible. We highlight the notable
aspects of our framework:

Algorithm 1: SAGE-Environment Interaction

Initialize: Performance actor 7 and critic Q;

Initialize: Safety actor mg and critic Qg;

fori=0, ..., #Episodes do

x = env.reset()

while not terminal do

u~ m(x);

// The safe actor intervenes when the current
state-action is deemed unsafe by the safety
critic.

if Qs(z,u) < e then
| u~ms(x)

end

x',r = env.step(u)

// Update performance actor-critic and safety
actor-critic. See Appendix B for details.

end
end

i) HJ reachability provides a control-theoretic and low-
latency way to verify safety. By incorporating HJ Reach-
ability theory in the CMDP framework, we have a control-
theoretic update rule to learn about safety and can verify
safety by evaluating the safety value of the current state.
Another positive outcome of the formulation is that the
original constrained problem is decomposed into two un-
constrained optimization problems, making our formulation
more amenable to gradient-based learning.

ii) Scales to high-dimensional visual context. Compared
to standard HJ Reachability methods, whose computational
complexity scales exponentially with the state dimension,
we updated the safety value directly on vision embedding,
with neural approximation. This is the highest-dimensional
problem studied studied via HJ reachability to-date.
Problem formulation. We inject HJ reachability theory into
the CMDP framework. Starting with Eqn. 1, we can interpret
the negative of a cost as a reward for safety and, without
loss of generality, reverse the direction of the inequality
constraint. Recall that the super-zero level set of the safety
value function, i.e., {z|Vs(z) > 0}, designates all states
from which the system can remain within the set of allowable
states, /C, over infinite time horizon. Thus, the safety value
function derived from HJ Reachability can be plugged into
CMDP (Eqn. 5):

Tt = arg max VE(x), st Vs(z) >e, Q)
where € > 0 is introduced as a safety margin. A key dif-
ference from the original CMDP formulation (Eqn. 1) is
that constraint satisfaction, Vg(z) > ¢, no longer depends
on the policy, . Thus, we can bypass the challenges of
solving CMDPs (Section 2) and decompose learning under
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(c) Performance comparison of learning rules (averaged over 5 random
seeds)

Figure 2. We use two classical control benchmarks, double integrator and Dubins’ car, to evaluate the performance of different learning
rules for safety analysis. (a) shows the safety value function of the double integrator and the black line delineates Vs (x) = 0, within which
the particle can remain within the allowable range of € [—1, 1]. (b) shows the iso-surface of the safety value function at 0, i.e., Vs(z) = 0,
for Dubins’ Car, within which the car can reach a unit circle at the origin. The performance comparison is summarized in (c).

safety constraints into optimizing for performance and up-
dating safety value estimation. While a number of works
have similar dual-policy architecture [6, 13,46], ours design
is informed by HJ Reachability theory. Another difference is
that HJ Reachability considers safety as absolute, and there
is no mechanism to allow for some level of safety infraction,
and thus y; in Eqn. [ is not longer present.

Update of Safety Critic. We apply HJ Bellman update,
in place of standard Bellman backup, to learn the safety
value function. The learning rule proposed by [23] is
defined on discrete action space, which we modify for
continuous action space (Eqn. 6). While the safety ac-
tor is sub-optimal during learning, the resulting HJ Bell-
man target is an under-estimation of the safety value, as
Qs(z',u') < maxy ey Qs(a’,u'). Note that Qg (z,u) is
updated model-free using state-action transitions, and only
additionally requires I(x). We assume () can be acquired
from the vehicle’s sensing capability [8] or estimated from
perception [10].

Qs(z,u) = (1 = y)l(x) + ymin{l(z), Qs(z’,u")},
u ~mg(ah).

(6)

SAGE. We propose SAGE, which consists of a performance
policy and a safety policy. The safety backup controller is
applied in a least restrictive way, only intervening when the
RL agent is about to enter into an unsafe state, i.e., u ~ 7, if
Qs(x,u) > € and u ~ 7g otherwise. The performance pol-
icy may be implemented with any RL algorithm. Since we
expect the majority of samples to be from the performance
policy, it is more appropriate to update the safety actor critic
with an off-policy algorithm. In this work, we base our im-
plementation of the safety actor critic on soft-actor critic
(SAC) [29]. The safety critic is updated with Eqn. 6, and the
safety actor is updated via policy gradient through the safety
critic, i.e., V,Qg(z,u). Algorithm 1 provides an overview
for SAGE and a detailed version is presented in Appendix B.

5. Experiments

We evaluate SAGE on three sets of benchmarks, of in-
creasing difficulty. While the our intended application is
autonomous racing, the first two set of benchmarks can be
considered as some abstraction of vehicles with the objective
of avoiding obstacles and/or moving towards goals. Firstly,
we evaluate on two classical control tasks, where the safe vs.
unsafe states are known analytically, and we compare the
HJ Bellman update used in SAGE to alternatives for learn-
ing safety critics in the literature. Secondly, we compare
SAGE to constrained RL baselines in Safety Gym. Finally,
we challenge SAGE in Learn-to—Race and conduct abla-
tion to better understand how different components of SAGE
contribute to its performance.

5.1. Experiment: Classical Control Benchmarks

As mentioned earlier, safety critics have been trained
in other works [7, 44] with different learning rules. The
objective here is to compare the HJ Bellman update with al-
ternatives. Thus, we focus on safety analysis with off-policy
samples, and evaluate on two classical control benchmarks
Double Integrator [23] and Dubins’ Car [5], where the safe
/ lively” states (Figure 2a and 2b) and the optimal safety
controller are known analytically. Double Integrator char-
acterizes a particle moving on the x-axis, with velocity v.
By controlling the acceleration, the objective is to keep the
particle on a bounded range on x-axis. Dubins’ Car is a sim-
plified car model, where the car moves at a constant speed.
By controlling the turning rate, the goal is to reach a unit
circle regardless of the heading. More information on the
two tasks are provided in Appendix A.1.

In this experiment, we generate state-action pairs with
a random policy, and evaluate the safety value function
with respect to the optimal safety controller, 7. In
both Safety Q-functions for RL (SQRL) [44] and the
Conservative Safety Critic (CSC) [7], the safety value
function is defined as the expected cumulative cost, i.e.,

2Liveness refers the ability to reach the specified goal [31].
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Figure 3. Performance of SAGE with comparison to baselines in the CarGoall-v0 (top row) and PointGoal1-v0 (bottom row) benchmarks
(averaged over 5 random seeds). In Goal tasks, agents must navigate to observed goal locations (indicated by the green regions), while

avoiding obstacles (e.g., vases in cyan, and hazards in blue).

QF(z,u) = Eupuprr [Doneo VC(an) |20 = ,u0 = 1],
where C(zy,) = 1 if a failure occurs at z;, and 0 otherwise.
In this case, both the environment and optimal safety pol-
icy are deterministic. Thus, by definition, Qgg (x, 75 (x))
should be 0 if x is a safe state. SQRL uses the standard Bell-
man backup to propagate the failure signal. On top of that,
CSC uses conservative Q-learning (CQL) [37] to correct for
difference between the behavior policy, i.e., the random pol-
icy, and the evaluation policy, i.e., the optimal safety policy,
and overestimates (¢ to err on the side of caution.

Since the safe vs. unsafe states are known for these bench-
mark tasks, we can directly compare the performance of
these safety critics learned with different learning rules (Fig-
ure 2c). While the theoretical cut-off for safe vs. unsafe
states is 0, the performance of SQRL is sensitive to the
choice of the cut-off; thus, we report AUROC instead. For
both CQL and SQRL, we do a grid search around the hyper-
parameters used in the original papers and report the best
results. The implementation details and additional results
are included in Appendix A.2. Directly applying Bellman
update for safety analysis, as in SQRL, performs reasonably
well on Double Integrator, but not on the more challenging
Dubins’ Car. In our experiment, CQL consistently under-
performs SQRL. In comparison, HJ Bellman update has
AUROC close to 1 on both tasks and has very small variance
over different runs. It is worth-noting that the result with the
HJ Bellman update is achieved without explicitly addressing
the distribution mismatch [47], which typically challenges

oft-policy evaluation problems. This experiment only com-
pares the efficacy of the different learning rules for safety
critic given the same off-policy samples, and does not intend
to compare other aspects of SQRL and CSC.

One caveat is that SQRL and CQL uses a binary signal for
failures, while HJ Bellman update has access to the distance,
I(x). On one hand, HJ Bellman update does assume more
information. On the other hand, it may be more practical
to learn safety from distance measurements then experienc-
ing failures. Applied to autonomous driving, this translates
to learning to avoid obstacle from distance measurements
that are becoming prevalent on cars with assisted driving
capabilities [8], in comparison to experiencing collisions.

5.2. Experiment: safety Gym

We additionally evaluate our proposed approach, SAGE,
in Safety Gym [41]. Specifically, we evaluate on the stan-
dard CarGoall-v0 and PointGoal1-vO benchmarks, where
the agent navigates to a goal while avoiding hazards. We
compare SAGE against baselines including: Constrained
Policy optimization (CPO) [2], an unconstrained RL algo-
rithm (Proximal Policy optimization (PPO) [43]), and its
Lagrangian variant (PPO-Lagrangian). By default, distance
measurements from LiDAR are available to all baselines in
these benchmarks, and thus SAGE has direct access to I(x).
Episodic Performance and Cost curves are shown in Figure
3 and implementation details are included in Appendix C.

PPO-SAGE has significantly fewer constraint violations,



(a) Aerial

(b) Third-person

(c) Ego-view

Figure 4. We use the Learn—-to-Race (L2R) framework [30] for evaluation; this environment provides simulated racing tracks that are
modeled after real-world counterparts, such as the famed Thruxton Circuit in the UK (Track01: Thruxton, (a)). Here, learning-based
agents can be trained and evaluated according to challenging metrics and realistic vehicle and environmental dynamics, making L2R a
compelling target for safe reinforcement learning. Each track features challenging components for autonomous agents, such as sharp turns
(shown in (b)), where SAGE only uses ego-camera views (shown in (c)) and speed.

compared to other baselines, and the number of violations
decreases over time. While CPO and PPO-Lagrangian take
into account that a certain number of violations are permissi-
ble, there is no such mechanism in SAGE, as HJ Reachability
theory defines safety in an absolute sense. While the inability
to allow for some level of safety infractions, unfortunately,
compromises performance, SAGE learns mature obstacle-
avoidance behaviors, compared to some policies, which may
ignore traps in favor of fast navigation to goal locations.
Violations that do occur in SAGE result from neural approx-
imation error, and the number of violations decreases over
time as the safety actor-critic gains experience, despite the
randomized and constantly-changing episodic layouts.

5.3. Experiment: Learn-to-Race

Task Overview. In this paper, we evaluate our ap-
proach using the Arrival Autonomous Racing Simulator,
through the newly-introduced and OpenAl-gym compli-
ant Learn—-to—Race (L2R) task and evaluation frame-
work [30]. L2R provides multiple simulated racing tracks,
modeled after real-world counterparts, such as Thruxton
Circuit in the UK (Track01l:Thruxton; see Figure 4).
L2R can provide access to RGB images from any specified
location, semantic segmentation, and vehicle states (e.g.,
pose, velocity). In each episode, an agent is spawned on the
selected track. At each time-step, it uses its observations to
determine normalized steering angle and acceleration. All
learning-based agents receive the reward specified by L2R,
which is formulated as a weighted sum of reward for driv-
ing fast and penalty for leaving the drivable area; the main
objective is to complete laps in as little time as possible.
Additional metrics are defined to evaluate driving quality.
Implementation Details. To characterize the performance
of our approach, we report results on the Average Speed and
the Episode Completion Percentage (ECP) metrics [30] as
proxies for agent performance and safety, respectively. We
report other metrics defined by L2R in Appendix F.

We use Track01l:Thruxton in L2R (Fig. 4) for all
stages of agent interaction with the environment. During

training, the agent is spawned at random locations along
the race track and uses a stochastic policy. During eval-
uation, the agent is spawned at a fixed location and uses
a deterministic policy. The episode terminates when the
agent successfully finishes a lap, leaves the drivable area,
collides with obstacles, or does not progress for a number
of time-steps. For each agent, we report averaged results
across 5 random seeds, evaluated every 5000 steps over an
episode (one lap). We use SAC as the performance policy,
and all agents only have access to ego-camera view (Figure
4c) and speed, unless specified otherwise. The implementa-
tion, including network architecture and hyperparameters,
are detailed in Appendix E.
Ablation Study. To demonstrate the benefit of utilizing do-
main knowledge in the form of a nominal model, we use
a kinematic bike model [35] to calculate the safety value
and derive the corresponding safety controller, detailed in
Appendix in D. We refer to this as the static actor-critic. In
all our experiments, only the static actor-critic has access to
vehicle pose, specifically location and heading. We evaluate
the performance of this static actor-critic by coupling a ran-
dom agent with it (SafeRandom). We test SafeRandom
on a series of safety margins to account for unmodelled dy-
namics; the performance averaged over 10 random seeds is
summarized in Figure F.1. For instance, ¢ > 4.2 achieves
80+% ECP, in comparison to 0.5% ECP by Random agent.
We examine the effect of having a safety controller, by
comparing SAC with an instance of itself that is coupled
with a static safety actor-critic (SafeSAC). We set the
safety margin € to be 4.2, based on empirical results from
SafeRandom. We also compare the performance of using
the static safety actor-critic (SafeSAC) and a dynamically-
updating one (SAGE). Since the SAGE agent is expected to
have a better characterization of the safety value, the agent no
longer depends on a large safety margin to remain safe and
thus SAGE uses a safety margin of 3.0m, which accounts for
the vehicle dimensions®. We also report results of SafeSAC

3The HJ reachable tube is computed with respect to the back axle of
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Figure 5. Left: Episode percent completion and Right: speed evaluated every 5000 steps over an episode (a single lap) and averaged over 5
random seeds. Results reported based on Track01: Thruxton in L2R.

with the same safety margin in in Appendix F.

Results. The performance comparison between different
agents is summarized in Figure 5. In interpreting the results,
note that a single lap in TrackO1l:Thruxton is 3.8km,
whereas CARLA, the de facto environment for urban driving
research, has in total 4.3km drivable roads in the original
benchmark [18]. Thus, successfully completing an episode,
i.e., a lap, is quite challenging.

The static safety actor-critic significantly boosts initial safety
performance. With the help of the static safety actor-critic,
the SafeSAC can complete close to 80% of a lap, in com-
parison to slightly more than 5% with SAC. This, again,
showcases the benefit of injecting domain knowledge in the
form of a nominal model. However, there are two notable
limitations with the static safety controller. Firstly, it is ex-
tremely conservative, hard-braking whenever the vehicle is
less safe. As a result, the SafeSAC agent has an initial
speed of less than 10km/h. Secondly, as the SAC learns
to avoid activating the safety controller and drive faster, the
static safety controller is no longer able to recover the vehicle
from marginally safe states. In fact, by applying the ‘optimal’
safety action from Eqn. D.2, i.e., maximum brake and steer
towards centerline, the vehicle will lose traction and spin out
of control. As a result, the ECP actually decreases over time
for SafeSAC.

SAGE learns safety directly from vision context and can re-
cover from marginally safe states more smoothly. Having a
safety actor-critic that is dedicated to learning about safety
significantly boosted the initial safety performance of SAGE,
in comparison to the SAC agent, even though both the perfor-
mance and the safety actor-critics are randomly initialized.
Moreover, this shows that the safety value function can be
learned from scratch on vision embedding. In practice, we

the vehicle and does not account for the physical dimension of the vehicle.
Using the car length as the safety margin is a rough engineering estimate.

envision the safety actor-critic to be warm-started with the
nominal model or observational data, and fine-tuned by in-
teractions with the environment. Furthermore, the learnable
safety actor-critic can recover from marginally safe states
smoothly, avoiding the two undesirable behaviors from the
static actor-critic. A qualitative comparison of such behav-
iors is available at the anonymized paper website. While
SAGE outperforms other baselines, there is still significant
performance gap with human, as the speed record at Thrux-
ton Circuit is 237 km/h (average speed).

6. Conclusion

In this paper, we propose SAGE for end-to-end au-
tonomous racing, which can learn to identify unsafe states
from ego-camera views and recover from unsafe states, de-
spite the complex dynamics with unstable regimes. We
demonstrate on two classical control benchmarks that the HJ
Bellman update is more effective than alternatives for learn-
ing the safety critic. Compared to constrained RL baselines
in the Safety Gym, we show that SAGE has significantly
fewer constraint violations. We report the new state-of-the-
art result on Learn—-to—Race, and we demonstrate that
the safety value can be learned directly on visual context,
thereby expanding HJ reachability to broader applications.

Throughout our experiments, we find it is highly effective
to inject domain knowledge, in the form of nominal model or
control-theoretic learning rule. In our experiments, the safety
actor-critics were randomly initialized. But, in practice, we
expect it to be pre-trained with a nominal model and/or ob-
servational data, prior to interacting with the environment.
While neural approximation enables us to scale HJ reacha-
bility to high-dimensional visual inputs, we unfortunately
lose the hard guarantees on safety. An important next-step is
to characterize neural approximation error and find ways to
retain the safety guarantees with function approximators.


https://sites.google.com/view/safeautonomousracing/home
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A. Classical Control Benchmarks

The objective of this section is to compare the learn-
ing rule proposed by [23], i.e., Q(z,u) = (1 — y)l(x) +
~ymin{l(x), max, ey Q(«’, v’} with alternatives for learn-
ing safety value function. We evaluate it on two classical
control benchmarks, Double Integrator and Dubins’ Car, as
described in Section A.l, where the analytical solution to
safe states and optimal safe actions are known. Thus, we
implement the learning rule here as Eqn. A.1. This is slightly
different from the general case of Eqn. 6, where the optimal
safety policy is unknown.

Q(x,u) = (1 = )l(z) +ymin{i(z), Q(z',u'},

where v/ =75, (A1)

A.1. Model Dynamics

Double Integrator. The double integrator models a particle
moving along the x-axis at velocity v. The control input is
the acceleration a. The goal in this case is keep the particle
within a fixed boundary, in this case « € [—1, 1], subject to

a€[-1,1].
=
{i):a

By solving the Hamiltonian, 1ie., 7§(z)
arg maxyey (f(x,u), VVs(z)), we can get the opti-
mal safe control as:

at = “
a

Dubins’ Car. The Dubins’ car models a vehicle moving at
constant speed, in this case v = 1. Similar to the kinematic
vehicle model, x, y, ¢ describes the position and heading of
the vehicle, and control input is the turning rate u € [—1, 1].
The goal is to reach a unit circle centred at the origin.

(A2)

if OVs/0v >0

/ (A.3)
otherwise

& = vcos()
j = vsin(9)
b=

Note that Dubins’ Car is a reach task, i.e. reaching a spec-
ified goal, instead of an avoid task, i.e. avoiding specified
obstacles. The reach task can be simply implemented by set-
ting 75 (z) = argmin, ey (f(z,u), VVs(z)) [5]. In other
words, the optimal safe action for a given state is the one
that minimises the distance to the goal. The corresponding
optimal safe control is

(A4)

if OVs/00 >0

u = {“ , (A.5)
u otherwise

The ground truth safety value function for these two
benchmarks are shown in Figure 2a and 2b.

11

Implementation & Evaluation. We use a neural network
with hidden layers of size [16, 16] for the double integrator
and [64, 64, 32] for Dubins’ car. We use ADAM [33] as
the optimiser with a learning rate of 0.001, batch size of
64. We update the safety value function over 25K steps
for Double Integrator and 50K steps for Dubin’s Car, and
report classification accuracy every 1000 steps averaged
over 5 random seeds. While the safety value is defined over
continuous state space, we evaluate the performance over a
discrete mesh on the state space. By definition, the safety
value at a given state x is Q(x, u*), where u* = 7§5(x).
Qualitative Results. Qualitative comparison between the
ground truth value and that learned via HJ Bellman update is
shown in Figure A.1 and A.2. As we can see, the neural ap-
proximation largely recovers the ground truth value, except
for minute difference.

Ground Truth HJ Bellman

x 0.0

-10 02
-2 2

Figure A.1. A comparison between the ground truth safety value
and that learned via HJ Bellman update for double integrator; The
black line delineates Vs (z) = 0.
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Figure A.2. A comparison between isosurface of the ground truth
safety value (blue) and that learned via HJ Bellman update (green)
for Dubins’ car

While we do not need to learn the safety actor in this
case, we further demonstrate that V,,Q s (z, u) can indeed by
used to update the safety actor. In Figure A.3, we compare
the ground truth 9V/9v, with which one can determine
the optimal safe action with Eqn. A.3, and the gradient
through the safety critic, i.e., V, Qs (z, u). We can see that



V.Qs(z,u), consistently point towards the correct optimal
safe action within the safe set, i.e., the area delineated by
the black line. The safety value outside the safe set is not
learned, as the region is outside the support of data when
episodes terminate upon failures.

AV /o VuQs (. u)

a

Figure A.3. The gradients through the safety critic, i.e.,
V.Qs(z,u), consistently point towards the correct optimal safe
action, as indicated by 9V/dv (Eqn. A.3), within the safe set (the
area delineated by the black line) for double integrator.

A.2. Learning Rule Comparison for Safety Critic

Firstly, we describes the approaches pertaining to learning

the safety critic in [7,44]. In both Safety Q-functions for RL
(SQRL) [44] and Conservative Safety Critic (CSC) [7], the
safety critic is defined as the expected cumulative cost, i.e.
QF(z,u) = Eupupnr [Doneo V7 C(zr)|zo = ,u0 = 1],
where C(z) = 1 if a failure occurs at x; and 0 other-
wise. Both papers endowed the safety critic, Q7 (x, ) with
a probabilistic interpretation, i.e. the expected probability of
failure.
SQRL. The safety critic is trained by propagating the failure
signal using the standard Bellman backup, as in Eqn. A.6,
where D denotes the replay memory, v is a time-discount
parameter, and Qg is the delayed target network. This ap-
proach for learning the safety critic is also adopted in [46].

Qe < Erua~p [C(x) +75(1 = C(@))Ewnn QT (2, “/)]
(A.6)

CSC. On top of using Bellman backup to propagate the fail-
ure signals, CSC uses conservative Q-learning (CQL) [37]

to correct for the distribution mismatch between the be-
haviour policy and the evaluation policy, and overestimate

Q¢ to err on the side of caution. The resulting objec-
tive is given in Eqn. A.7, where B"Q(z,u) = C(z) +
’yEx/Np(x/|x,u)7u/Nﬂ(x/)Q(:c',u’) is the Bellman operator

and « is a hyperparamter that controls the extent of con-
servativeness. If o = 0, the objective is the same as that of
SQRL.

£= 2B [Qee0) - B Qo)
-« []EzN’D,uNTr(x)QC (#,u) = By unp Qe (2, ’LL)]

(A7)

Note that CSC reversed the sign in front of o compared to
the original implementation in CQL so as to over-estimate
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Q¢ This learning objective does not guarantee point-wise
conservativeness, but conservativeness in expectation, i.e.
E.QT (x,u) > E, QT (x,u). 7 is the rate for polyak averag-
ing of the target network, i.e. Q' + 7Q + (1 — 7)Q’.
Implementation Details. In [44], the authors used a learn-
ing rate of 3 x 1074, g = 0.7. Using the same learning rate,
we did grid search over vg = [0.7,0.9] and 7 = [0.1,0.01].
We observed that yvg = 0.9 had better performance, and thus
selected ys = 0.9 and 7 = 0.1.

In [7], the authors used a learning rate of 2 x 1074, vg =

0.99, and selected « = 0.5 from from 0.05, 0.5, and 5.
Using the same learning rate and g, we did grid search over
a = [0.01,0.05,0.5,5] and 7 = [0.1,0.01]. We selected
a=0.0land 7 = 0.1.
Results. The main results are summarized in Figure 2c.
In Figure A.4, we show a qualitative comparison between
the ground truth safety value and that learned via different
learning rules. In interpreting the results, note that both
the environment and optimal safety policy are deterministic.
Thus, Qgg (z,m%(x)) should be 0 if x is a safe state, follow-
ing the definition. Due to the difference in definition, i.e.,
Qs(x) > 0 is safe for HJ safety value and Q¢ (z) < 0is
safe in SQRL and CQL, we plot 1 — Q¢ such that in Figure
A.4 the larger value consistently indicates safety and the
cut-off for safe vs. unsafe is 0.

SQRL largely captures the correct safe states, though the
classification performance is highly dependent on picking
an appropriate threshold. CQL does underestimate the level
of safety (and overestimate Q) as intended, and the pattern
of underestimation appear to corresponds to V,Qg (refer to
Figure A.3).

Ground Truth SQRL (1-0c)

EEE ] 1 2 2
v

Figure A.4. Comparison between the group truth safety value and
the safety critics from different learning rules for double integrator

H) Bellman

CQL (1-0c)

L




B. SAGE Algorithm

SAGE relies on a dual policy structure, the rationale of
which is explained in Section 4. This pairing of a safety
policy and a performance policy is important, as we are
able to decompose the problem of learning under safety
constraints into optimizing for performance and updating the
safety value function, separately.

We optimize the performance policy using SAC, but it
may be switched for any other comparable RL algorithms.
The safety policy is used least-restrictively, that is only in-
tervene when the RL agent is about to enter into an unsafe
state and thus allowing the performance policy maximum
freedom in exploring safely. Instead of using the optimal
safe policy from solving Hamiltonian, the safe policy is up-
dated via gradients through the safety critic, same as other
actor-critic algorithms.

C. Details: Safety Gym Experiment

Following the default CarGoall-v0 and PointGoall-v0
benchmarks in Safety Gym, all agents were given LiDARs
observation with respect to hazard, goal, and vase, with
avoiding hazards as the safety constraints. Both environ-
ments were initialised with a total of 8 hazards and 1 vase.
Agent’s are endowed with accelerometer, velocimeter, gyro,
and magnetometer sensors; their LIDAR configurations in-
cluded 16 bins, with max distance of 3.

The baselines we considered, i.e., CPO, PPO and PPO-
Lagrangian follows the default implementation that comes
with Safety Gym. PPO-SAGE wraps the proposed safety
actor critic around the PPO base agent. Despite PPO being
an on-policy algorithm, the SAGE safety critic was imple-
mented with off-policy updates, using prioritised memory re-
play based on the TD-error of predicting safety value. Since
[(x) is small in this environment, we scaled cost by a factor
of 100. For the safety actor-critic, We used ~g annealing
from 0.85 to 1 following [23], 7 = 0.005, critic learning
rate of 0.001, actor learning rate of 0.0003, and a = 0.2
(regularisation on policy entropy). We used a safety margin
€ = 0.25, mainly to account for the dimension of the hazards
(radius = 0.2).

For each model, on each Safety Gym benchmark, results
were reported as the average across 5 instances. All exper-
iments in Safety Gym were run on an Intel(R) Core(TM)
19-9920X CPU @ 3.50GHz - with 1 CPU, 12 physical cores
per CPU, and a total of 24 logical CPU units.

D. Static Safety Actor-Critic Derived from
Kinematic Bike Model

To demonstrate the benefit of utilizing domain knowledge
in the form of a nominal model and to compare with the
learnable safety actor-critic in SAGE, we use the kinematic
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Algorithm 2: SAGE: Safe Autonomous Racing via
Approximate Reachability on Ego-vision

Initialize: performance critic Q)¢ and actor 7;

Initialize: safety critic ()4, and actor 7y ; target
networks ¢y < ds;

Initialize: replay buffer D;

fori=0, ..., #Episodes do

x = env.reset()

while not terminal do

u~ mo(x);

// The safe actor intervenes when the current
state-action is deemed unsafe by the safety
critic.

if Qs (2, u) < € then
‘ U~ Tog (x )

end

x',r = env.step(u)

D.store(z, a,z’, 1)

=1

Update performance critic ()4 and actor mg
with preferred RL algorithm;

// Update the safety critic:

Sample N transitions (x, u, z") from D;

// Calculate the target value with the
discounted Bellman safety update

y = (1=)i(z)+y min{l(z), Qu, (&', )},
where v’ ~
Los =N (Qoslz,u) —y)°

¢s <+ ps —aVy Ly

// Update the safety actor with deterministic
policy gradient:

Os + 954—04]\[‘1 Z VuQ(I, U)VQSTFQS (x)
// Update the target networks:

P« Tos + (1 — 7)Y

end
end

vehicle model [35] (see Figure D.1a), which is a significant
simplification of a realistic race car model [32], to compute
the safety value and corresponding ‘optimal’* safety con-
troller. The dynamics and ‘optimal’ safety control is given
in Eqn. D.1 and D.2, where the state is x = [z, y, v, ¢], and

“4only with respect to the nominal model



N
/ibQ

(a) nominal model

(b) Vs (z,y, v, ) computed via the nominal model, where v=12m/s

Figure D.1. (a) We compute the safety value function, via a kinematic vehicle model. (b) We illustrate different views of the 4D state space,
given fixed velocity and three different yaw angles, indicated by the blue arrows.

the action is u = [a, d]. =, y, v, ¢ are the vehicle’s location,
speed, and yaw angle. a is the acceleration, and § is the
steering angle. The actions are bounded, i.e., a € [a,@] and

0 € [9,0]. L = 3m is the car length.

& = vcos(9)

F(x,u) = gizsm(@ (D.1)
¢ =wvtand/L
. Ja if 9Vs/Ov <0
“ TN else ’
(D.2)

if OVs/0¢ >0
else

5*

Intuitively, the ‘optimal’ safety policy brakes and steers
towards the center of the track as much as possible. We
also derive the ‘optimal’ safety policy here. The op-
timal safety control is derived by solving the Hamilto-
nian as given in Eqn. D.3a. By definition, VVg(x)
[8VS/8$, 8Vs/ay, 8Vs/a’u, 3V5/8¢] .

m5(x) = argmax(f(x, u), VVs(x)) (D.3a)
— g ma focos() 5 +vsin(0)
+a% +Utan6/L8(,9—‘§] (D.3b)
= arg [a%?é(u[a% + vtan 6/L%—‘(/;] (D.3¢)

From Eqn D.3c, it is clear that the actions given by Eqn. D.2
maximize the Hamiltonian.

We parametrized the racetrack as a cubic spline and com-
puted [(x) by projection onto the spline. Setting Vg (x,0) =
l(x), we calculated the backward reachable tube using the
code from [27]. For efficient computation, we divided the
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racetrack into overlapping segments and computed the safety
value segment-wise. Fig. D.1b illustrates resulting safety
value function at slices of state space, as the agent enters into
a sharp turn. It is clear that the safety value at each location
can be quite different from the initialization, [(x).

E. Details: Learn-to-Race Experiment

Vision Encoder. We condition the optimization of the per-
formance policy as well as the safety value updates on pre-
trained embedding of vehicle’s visual scene context. The
perception module maps ego-images from the on-board RGB
camera to feature embedding of reduced dimension. To learn
this mapping, we use a standard variational autoencoding
(VAE) [34] paradigm, with a convolutional encoder.

We use an image reconstruction objective with binary
cross-entropy loss, Adam optimizer [33], and a latent vector
dimension of 32. We train the VAE encoder to reconstruct
ego-images, sampled from the vehicle’s front camera during
random agent execution; examples are provided in Figure
E.1. We further refine the encoder by training the VAE mod-
ule to reconstruct projected road boundaries, illustrated in
Figure E.2, with inputs in the left column and the recon-
structed outputs in the right column.

S —

Figure E.1. VAE image reconstruction, with real images in the left
column and reconstructed images in the right column.



Figure E.2. VAE reconstruction of projected road boundary images,
with real images in the left column and reconstructed images in the
right column.

Neural Architecture. As illustrated in Figure E.3, the vi-
sion encoder takes an image as input to produce a latent
vector, which is concatenated with speed and action embed-
ding and passed to the performance and safety actor-critics.
The specific implementation of layers are summarized in
Table E. 1.

State, X Performance Actor-Critic

> u~m(x)

Ego-image

Speed =)

[ —

e [T

> U~ T(x)

lllfe

000 oo

Safety Actor-Critic

Figure E.3. SAGE neural architecture overview.

Specifically, we use a squashed Gaussian policy (Eqn.
E.1) for both performance and safety actors, following [29].
§~N(O,T)

u = tanh(p(z) + o(x) © &), (E.D)

Agent training details. During training, the agent is
spawned at random locations along the race track and uses a
stochastic policy. During evaluation, the agent is spawned
at a fixed location and uses a deterministic policy. The
episode terminates when the agent successfully finishes a
lap, leaves the drivable area, collides with obstacles, or does
not progress for a number of steps. For each agent, we re-
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port averaged results across 5 random seeds, evaluated every
5000 steps over an episode (one lap). In total, we train each
agent over 250,000 steps, and evaluate it over 50 episodes.
During its interaction with the environment, the agent
receives a 192 x 144 ego-camera view and its speed at each
time-step. The agent encodes the RGB image frame and
its speed to a 40-dimensional feature representation, sub-
sequently used as input to both actor-critic networks. We
initialise the replay buffer with 2000 random transitions, fol-
lowing [1]. After 2000 steps, we perform a policy update
at each time step. For the SafeSAC agent, we only save
state-action transitions from the performance actor to the
replay buffer. For the SAGE agent, we save all state-action
transitions.
Implementation Details. For all experiments, we imple-
mented the models using the PyTorch 1.8.0. We optimised
both the performance and safety actor-critic with Adam [33],
with a learning rate of 0.003. We used v = 0.99 for the
performance critic, and annealed g from 0.85 to 1 for the
safety critic following [23]. We used 7 = 0.005 for the
performance critic, and 7 = 0.05 for the safety critic. For
both the performance and safety actor, we include the policy
entropy term with o = 0.2. We used a batch size of 256, and
a replay buffer size of 250,000.
Computing hardware. For rendering the simulator and
performing local agent verification and analysis, we used a
single GPU machine, with the following CPU specifications:
Intel(R) Core(TM) i5-4690K CPU @ 3.50GHz; 1 CPU, 4
physical cores per CPU, total of 4 logical CPU units. The
machine includes a single GeoForce GTX TITAN X GPU,
with 12.2GB GPU memory. For generating multi-instance
experimental results, we used a cluster of three multi-GPU
machines with the following CPU specifications: 2x In-
tel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz; 80 total CPU
cores using a Cascade Lake architecture; memory of 512
GiB DDR4 3200 MHz, 16x32 GiB DIMMs. Each machine
includes 8x NVIDIA GeForce RTX 2080 Ti GPUs, each
with 11GB GDDR6 of GPU memory. Experiments were
orchestrated on the these machines using Kubernetes, an
open-source container deployment and management system.
All experiments were conducted using version
0.7.0.182276 of the Arrival Racing Simulator. The simulator
and Learn—-to—Race framework [30] are available for
academic-use, here: https://learn-to-race.orgq.

F. Additional Results

Performance of the SafeRandom agent. Recall that the
SafeRandom agent takes random actions and uses the
safety value function precomputed from the nominal model.
The optimal safety controller intervene whenever the safety
value of the current state falls belong the safety margin. The
safety margin is necessary because 1) the nominal model is
a significant over-simplification of vehicle dynamics, and 2)


https://learn-to-race.org

Table E.1. Network Architecture

Operation Input (dim.) Output (dim.) Parameters

VISUAL ENCODER
Conv2d (N, chan, 42, 144), chan : 3—32 convl , activation:=ReLU
Conv2d convl,chan: 32—64 conv2 , activation:=ReLU
Conv2d conv2, chan : 64—128 conv3 , activation:=ReLU
Conv2d conv3, chan: 128—256 convé , activation:=ReLU
Flatten — — —

Linear (mu)
Linear (sigma)

VISUAL ENCODER BOTTLENECK REPRESENTATION

N X h_dim
N X h.dim

N x 32
N x 32

VISUAL DECODER (only for pre-training Visual Encoder)

Unflatten — — —

ConvTranspose2d encoder.conv4: encoder.conv4.chan: 256 — 128 convtransposel , activation:=ReLU
ConvTranspose2d convtransposel, chan: 128 —64 convtranspose2 , activation:=ReLU
ConvTranspose2d convtranspose2, chan: 64 —32 convtranspose3 , activation:=ReLU
ConvTranspose2d convtranspose3, chan: 32 —3 convtranspose4 , activation:=Sigmoid

SAFETY ACTOR-CRITIC
actor_network — — —
g-functionl — — _
g-function2 — — _

PERFORMANCE ACTOR-CRITIC
actor_network — — —
g-functionl — — —
g-function2

ACTOR NETWORK (POLICY): SQUASHEDGAUSSIANMLPACTOR

Linear N x 32 N x 64 activation:=ReLU
Linear N x 64 N x 64 activation:=ReLU
Linear N x 64 N x 32 activation:=ReLU
Linear (projection: mu_layer) N x 32 N x3 —
Linear (projection: log_std_layer) N x 32 N x 3 —

Q FUNCTION
speed_encoder — — —
regressor — — —

SPEED ENCODER

Linear N x 1 N x 8 activation:=ReLU
Linear N x 8 N x 8 activation:=Identity

REGRESSOR
Linear N x 42 N x 32 activation:=ReLU
Linear N x 32 N x 64 activation:=ReLU
Linear N x 64 N x 64 activation:=ReLU
Linear N x 64 N x 32 activation:=ReLU
Linear N x 32 N x 32 activation:=ReLU
Linear N x 32 N x1 activation:=Identity

Table E.2. Learn-to-Race task [30] results on Track 01 (Thruxton Circuit), for learning-free agents, with respect to the task metrics:
Episode Completion Percentage (ECP), Episode Duration (ED), Average Adjusted Track Speed (AATS), Average Displacement Error
(ADE), Trajectory Admissibility (TrA), Trajectory Efficiency (TrE), and Movement Smoothness (MS). Arrows (1) indicate directions
of better performance, across agents. Bold results in tables E.2 and E.3 are generally best, however, asterisks (*) indicate metrics which

may be misleading, for incomplete racing episodes.

Agent ECP (1) ED* (|) AATS (1) ADE (}) TrA (1) TrE (1) MS (1)
HUMAN 1000 £0.0  78.6+£5.2 7929+4.7 24+01 093+£0.01 1.004+0.02 11.7+0.1
Random 0.50 £ 0.30  4.67 £ 3.2 11.90£3.80 15+0.60 081+0.04 033+038 6.7+1.1
MPC 100.0£0.0 301.40£10.10 4510+£0.0 090+£0.10 098+0.01 0.85+0.03 10.4+0.60

the HJ Reachability computation does not take into consid-
eration of the physical dimension of the vehicle.

The performance of the SafeRandom agent at different
safety margin is summarised in Figure F.1. For safety mar-
gin € > 4.2, the SafeRandom agent can finish 80+% of
the lap, and thus we use € = 4.2 as the safety margin for
the SafeSAC agent. On the other hand, the performance
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decrease drastically when the safety margin is reduced to 3.

SafeSAC & SAGE performance with same safe margin.
While we choose the safety margin ¢ based on performance
of the SafeRandom agent over a range of margins and
our best engineering judgement, some may wonder if the
superior performance of SAGE over SafeSAC may be at-
tributed to the use of different safety margins. Thus, we



Table E.3. Learn-to—Race task [

] results on Track01 (Thruxton Circuit), for learning-based agents.

Agent ECP (1) ED* (}) AATS (1) ADE () TrA (1) TrE (1) MS (1)

SAC 61.61 +£38.57 272.75+£256.51 47.99+309 1.54+1.07 094+0.02 028+0.12 11.84+2.12
SafeRandom (ours), 6 = 3.0 36.46 +23.71  654.37 £ 447.05 8.44 +1.37 3.93+£0.21 0.81+£0.10 0.00£0.00 13.21+1.88
SafeRandom (ours), 6 =4.2 63.63+£39.46 761.80+494.65 11.68+1.07 2.74+0.16 0.90+0.07 0.024+0.01 13.63+2.01
SafeSAC (ours), § = 3.0 25.70 +11.31 66.90 + 23.22 49.67+3.34 1.35+£0.05 0.86+0.06 0.14+0.05 8.46+2.35
SafeSAC (ours), § = 4.2 49.05 £41.66 617.52+£842.49 33.83£26.21 1.80+0.63 091+£0.12 0.07+0.11 10.03£2.75
SAGE (ours) 79.94 + 23.20 59.19+29.99 53.28+3.76 0.99+0.17 0.914+0.03 0.22+£0.03 9.27+£1.68

100

%)

(

Average Speed (km/h)

Percentage Complete

"
Safety Margin ¢

Figure F.1. Performance of the SafeRandom agent at different
safety margin (averaged over 10 random seeds)

also show here the performance of a SafeSAC agent with
the same safety margin as SAGE in Figure F.2. Given the
smaller safety margin, the ECP is low initially, which is in-
line with the observation from SafeRandom. Furthermore,
the ECP barely improves over time. As the performance
agent learns to drive faster, it is increasingly difficulty for
the static actor-critic to catch the vehicle in marginally safe
states.

100

rcentage Complete (%)

Per

250000 0 200000 250000

50000 100000 150000 200000 50000 100000 150000
# Steps # Steps

SafeSAC (5 =3.0) —— SPAR

Figure F.2. Performance of SafeSAC (e = 3) with comparison to
SAGE

Learn-to-Race benchmark results. In tables E.2 and E.3,
we follow [30] in reporting on all of their driving quality
metrics, for the Learn-to—Race benchmark: Episode
Completion Percentage (ECP), Episode Duration (ED), Av-
erage Adjusted Track Speed (AATS), Average Displacement
Error (ADE), Trajectory Admissibility (TrA), Trajectory Ef-
ficiency (TrE), and Movement Smoothness (MS).

We highlight the fact that such metrics as TrA, TrE, and
MS are most meaningful for agents that also have high ECP
results. Taking TrA, for example, safe policies score higher
ECP values but may spend more time in inadmissible po-
sitions (as defined by the task, i.e., with at least one wheel

17

touching the edge of the drivable area), compared to poli-
cies without a safety backup controller that may quickly
terminate episodes by driving out-of-bounds (thus spending
less time in the inadmissible positions). On the other hand,
policies that have low completion percentages also have low
ED scores, due to more frequent failures and subsequent
environment resets.

We observe new state-of-the-art performance received
by our approach, across the driving quality metrics, in the
Learn—-to-Race benchmark.
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